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Chebyshev Moments(CMs) have been applied to representation and recognition of 2D object shapes in
image processing and computer vision. However they still suffer from poor representation power and dif-
ficulty in computing invariants for shapes. In this work, we present Implicit Chebyshev Moments (ICMs)
to overcome these issues. Firstly, we use Euclid distance transformation to generate a series of level sets
based on a given shape. Secondly, we fit an implicit Chebyshev polynomial to the data set consisting of
the obtained level sets together with all the boundary points on the original shape and call the obtained
coefficients of the fitted implicit Chebyshev polynomial ICMs. Finally, we propose a new approach to de-
rive geometric invariants based on ICMs. In addition, we also develop an algorithm for the determination
of a suitable degree for implicit Chebyshev polynomials before representing a given shape. Experimental
results show the ICMs are more efficient for representing complex shapes than CMs.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Shape is one of the important perceptual features in im-
age analysis, object recognition and content-based image retrieval
paradigm. In order to extract the features of shapes, many shape
representation methods have been developed during the past
decades. Generally, these methods can be categorized into two
types: contour-based representations and region-based representa-
tions. Compared with contour-based representations, region-based
representations are applicable to more generic shapes (e.g., shapes
with holes, or consisting of multiple disconnected regions) due
to their ability to exploit both boundary and interior content of
shapes. Among the region-based representations, moments, in par-
ticular Chebyshev moments(CMs) [13,14], are commonly used ap-
proaches. CMs exhibit superior representation capability over other
moments (e.g. Legendre moments [21], Zernike moments [4]). The
main reason is that their basis functions are orthogonal in the do-
main of image coordinate space, which can eliminate the require-
ment for any discrete approximation to avoid introducing quanti-
zation errors. On the other hand, the application of CMs to object
recognition needs computation of their invariants. Hence, many
methods for computation of invariants have been proposed. For
example, the translation, scale and affine invariants of Chebyshev
moments were also proposed in [10,11,19,20,23]. The results of ex-
periments in these literatures demonstrate that the invariants of
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CMs can work better than other moment invariants in terms of
scale, rotation and affine invariant recognition in noisy, noise-free
and smooth distortion condition.

Despite the advantages mentioned above, Chebyshev moment
representation for shapes still suffers from three major issues as
follows:

1. Poor feature representation capability for shapes. A shape ap-
pears to be a binary image as shown in Fig. 1(a), usually
to be set to one the pixels located inside the shape and to
zero the pixels located outside. The use of Chebyshev approx-
imated function of two variables to represent a given shape
means that the function is used to approximate an indicator
function. Fig. 1(d) shows the graph of the indicator function
reconstructed from Chebyshev moments, consisting of shape
plane(red regions) and background plane (blue regions). Obvi-
ously, the representation of an indicator function needs higher
order Chebyshev moments, namely, higher degree Chebyshev
polynomials. The reason is that the function is discontinuous
at the boundary points of the shape, and accordingly leading to
weaker representation capability for shapes.

2. Inefficient Chebyshev moment invariants for object recognition.
Low-order Chebyshev moments describe the global features of
a shape and high-order moments capture its fine details. For a
complex shape, we need to combine numerous high-order and
low-order moments to describe the shape due to the poor fea-
ture representation capability of Chebyshev moments. However,
high-order moments are sensitive to slightly deformed shapes
(e.g. original shapes resulting from color noise [16]), which usu-
ally leads to failing to recognize complex objects.
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3. High computational cost. Chebyshev moment invariants pro-
posed in [11,20,23] belong to a family of the algebraic invari-
ants. As pointed out in [15,20], computation of these algebraic
invariants inherits the complexities from the Chebyshev poly-
nomials defined in terms of hypergeometric functions and ac-
cordingly needs to use algebraic iteration and performs linear
combinations of original Chebyshev moments. These two com-
putation procedures not only lead to high computational cost
but also tend to introduce accelerated errors.

In this work, we propose Implicit Chebyshev Moments (ICMs)
as a representation method for eliminating the above three weak-
nesses. ICMs can efficiently describe the shapes, especially compli-
cated shapes. The complicated shapes mean that the shapes can
only be represented by the implicit polynomials of degree greater
than six in theory, including shapes composed of a few discon-
nected components, shapes that intersect themselves, and shapes
with holes [8]. The lower order ICMs work as well as the higher
order CMs in representing the same shape. The basic reason for
this is that ICMs are obtained by approximating a continuous func-
tion, but the reverse is true for CMs. As an example, we respec-
tively used CMs and ICMs of order up to 10 to represent the same
crown shape (see Fig. 1(a)). Their reconstructed shapes are shown
in Fig. 1(b) and (c), respectively. From the two plots, we can see
that the CMs of order up to 10 fail to represent the crow shape.
Conversely, the ICMs can work well. Most importantly, both alge-
braic invariants and geometric invariants can be derived based on
ICMs, However, only algebraic invariants for CMs. The further de-
tailed discussion on these will be given in the following sections.

This paper is organized as follows. Below we discuss the back-
ground. Particularly, we review the definition and formula for
Chebyshev polynomial in two variables, and focus on interpola-
tion of discrete data sets with Chebyshev approximated function.
In Section 3, we first define an implicit Chebyshev polynomial
curve and then discuss how to fit an implicit Chebyshev poly-
nomial curve to the generated level sets together with all the
boundary points on the given shape. In addition, we develop an
algorithm for determination of a moderate degree for the fitted
implicit Chebyshev polynomial and a method to determine the dis-
tance between two adjacent level sets before generating level sets.
Section 5 presents simulation results obtained in comparing ICMs
with CMs in representing complex shapes. Section 6 summarizes
and concludes the paper.

2. Chebyshev polynomials in two variables approximation

A Chebyshev polynomial in two variables P;(x, y) are defined as

Fj(x.y) = Ti(0)T;(y) (1)

where Tj(x) and Tj(y) are Chebyshev polynomials of the first kind.
They are polynomials in x of degree i and y of degree j, respec-
tively. In general, the formula for a Chebyshev polynomial Ti(t) is
given by Ty (t) = cos(m arccos(t)).

The Chebyshev polynomials are frequently used to approximate
a continuous function or to interpolate a discrete data set. For a
given 2-D data set {zy},k=1,2,...,N;1=1,2,..., M, we can con-
struct a linear combination of the Chebyshev polynomial function
of two variables Pj(x, y), denoted by flx, y), to interpolate the
data set {zj;} at the associated coordinate points {(x;, y;)}, where
X, and y; are given by x; = cos(k—0.5)w /N, (k=1,2,...,N) and
yy=cos(l-0.5)w/M, (I1=1,2,...,M), respectively. Then, accord-
ing to [12], the formula for the function f{x, y) takes the following
form

N-1M-1

fey) =YY cPjxy) (2)

i=0 j=0

where the formula for computation of the coefficients ¢; can be
found in [5,12,17]

The interpolation function f{x, y) in (2) is called Chebyshev ap-
proximated function. Clearly, the function f(x, y) satisfies the equa-
tions f(xp,y) =z, k=1,2,...,N;1=1,2,...,M. Note that the
coefficients ¢; are 2-D discrete cosine transformation coefficients,
which can be computed by using fast Fourier transform algorithm
[12] or fast computation algorithm proposed in [1,29]. {c;.i=
0,1,..., N-1,j=0,1,..., M — 1} are also called Chebyshev mo-
ments.

From the formula (2), It follows that reconstruction of the poly-
nomial of two variables flx, y) of degree n requires n? multi-
plications of moments and Chebyshev polynomials. Implementing
moments up to the nth order requires the total number of multi-
plications (denoted by S(n)) as follows [18]:

S(n) =n?/2+3n/2+1 (3)

3. Representation of shape using implicit Chebyshev
polynomial curves

Observing Fig. 1(c), we can find that a shape completely de-
pends on all the boundary points on the shape and no any other
information is contained inside and outside of the shape. However,
the CMs representations introduce a great deal of extraneous in-
formation (e.g. set 1 to pixels located inside of shapes and 0 to
the pixels located outside as shown in Fig. 1(a)) so as to be able
to apply Chebyshev moments to the representation of the shape.
This leads to the inefficiency of the CMs representations. In order
to avoid the problem, we propose a method for the representation
of a shape based on implicit Chebyshev polynomial curves by only
using the shape boundary information instead of its associated bi-
nary image.

3.1. Formulation

Formally, an implicit Chebyshev polynomial curve is defined by
the equation f(x,y) = 0, where the formula for f(x, y) is the same
as (2). We also call the function f(x, y) the implicit Chebyshev poly-
nomial function. For convenience, The equation f(x,y) =0 can be
rewritten in vector form. Specifically, we first construct a matrix
consisting of elements ¢; in (2). Then, we map the matrix to a vec-
tor A by stacking the rows of the matrix.

A =coo Cor Com-1) Ci0 Cn CimM-1) ---

CN-10 C(N-1)1 --- C(N—l)(M—l)]T

Clearly, A is the (NM x 1) coefficient column vector of implicit
Chebyshev polynomial function.

In a similar way, the (NM x 1) column vector function of mono-
mials of implicit Chebyshev polynomial function in (2), denoted by
X(x, y), can be given by

X(x.y) = [Poo(x.y) Por(x.y) Pom—1y(%.y) ...
Pn-1y0(x,y) Pov-1ym—1) (%, 1"

Combining the two above generated vectors, we can rewrite the
equation defining implicit Chebyshev polynomial curves in vector
form as follows

fxy) =X(xy)'A=0 (4)

Denoting the number of coefficients of f{x, y), as well as the di-
mension of the coefficient vector A, with r, we have r = NM. We
also call f(x,y) =0 the equation for implicit Chebyshev polyno-
mials curve of degree r and call the coefficient vector (A) implicit
Chebyshev moments (ICMs). Actually, an implicit Chebyshev poly-
nomial curve consists of all points(x, y) at which the values of the
implicit Chebyshev polynomial function f(x, y) are zeros. The set of
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these points, denoted by Z, is called the zero set of implicit Cheby-
shev polynomial function f{x, y). It should be noted that the main
difference between ICMs and CMs is that ICMs are obtained by fit-
ting an implicit Chebyshev polynomial curve to a shape, but CMs
are obtained by applying the 2-D discrete cosine transformation
to the associated binary image of the shape. ICMs do not belong
to a kind of implicit moment invariants discussed in [6]. The rea-
son is that implicit moment invariants have nothing common with
implicit curves and implicit polynomials and they are proposed to
differentiate explicit moment invariants because implicit moment
invariants only provide description of a pair of images rather than
a single image.

3.2. Fitting implicit Chebyshev polynomial curves to shapes

As mentioned in Section 1, in order to improve the feature rep-
resentation capability for shapes, we only represent the shape with
implicit Chebyshev polynomials, namely, fit an implicit Chebyshev
polynomial curve to the shape boundary. The fitting problem is
to find ICMs that lead to an implicit Chebyshev polynomial curve
that best fits the given shape boundary. Specifically, for a given
shape boundary, denoted by I', consists of (x;,¥;),i=1,2,...,ng,
ICMs fitting requires all points(x;, y;) satisfy the system of equa-
tions f(x;,y;) =0,i=1,2,...,ng, or, in vector form,

MIA=0 (5)

where My = [X(X1,¥1),X(X2,¥2), ..., X(Xny. ¥n,)]. In general, due to
ng > NM, the classical least-squares algorithm can be used to solve
the above system of equations to obtain the ICMs (A). However,
the obtained ICMs usually have poor representation of shapes. The
main reason is that the system of equations belongs to the type
of homogeneous linear system of equations [3]. In order to over-
come this problem, we use Min-Max method [7] to fit the implicit
Chebyshev polynomial curve.

Defining Xx(x, y) and Xy(x, y) as the partial derivative vector
function of the monomials vector function X(x, y) with respect to
x and vy, respectively, and denoting the local unit normal vector at
the boundary point (x;, y;) on the shape by (v;, w;), we can con-
struct two matrices: one is denoted byMy, each column of which
is Xx(x,y1),i=1,2,..., ng and another My, each column is Xy(x;,
¥;)- In addition, we construct two vectors: v = [U] vy ... Uno] and
w=[w; wy ... wy,]. Combing My, My and My to form a big ma-
trix: M =[Mp My My]", v and w to form a vector: b=[0 v w],
where 0 represents a row vector of zeros of length ng, then, we
have the system of equations MA = b. Using the linear least squares
algorithm to solve the above equation, we can obtain the coef-
ficient vector (ICMs) of the fitted implicit Chebyshev polynomial
curve:

A= M"M)"'M"b (6)

Note that the local unit normal vector (v;, w;) can be estimated
by calculating the normal vector to a regression line which is fitted
to several points in the neighborhood of the point (x;, y;) on the
given shape boundary. We fitted implicit Chebyshev polynomial
curve to the crow shape boundary in Fig. 1(a) with Min-Max al-
gorithm. The Fig. 2(a) shows the fitting result. From the figure, we
can see that the zero set of fitted implicit Chebyshev polynomial
fails to represent the crown shape due to the presence of the nu-
merous artifacts and outliers around the shape boundaries. In or-
der to improve the fitting accuracy, we fit gradients of the implicit
Chebyshev polynomial function to the normal vectors of level sets
generated from shape by using distance transform [3], with the de-
sired result that the fitted implicit Chebyshev polynomial functions
have as few extreme points as possible. We name this algorithm as
gradient constraints of multiple level sets (GCMLS) fitting methods,
which will be further detailed in the next section.

3.3. Fitting implicit Chebyshev polynomials with multi level sets

The Min-Max algorithm forces the gradients of the fitted im-
plicit Chebyshev polynomial function to have similar orientations
to the normal vectors of the shape image. This can be viewed
as interpolation of normal vectors of the shape image with the
second-kind Chebyshev approximated function. Clearly, the inte-
rior and exterior of the shape contain no any interpolated normal
vectors, and thus leading to the failure in fitting implicit Cheby-
shev polynomial curves as illustrated in Fig. 2(a). In order to elim-
inate this issue, we need to impose some constraints on interior
and exterior of the shape without introducing extraneous informa-
tion, specifically, generating a series of level sets with Euclidean
distance transformation and computing their corresponding nor-
mal vectors. As an example, Fig. 2(b) illustrates these level sets.
The distance between any two adjacent level sets is set to 5. We
compute the normal vectors at every point on these level sets,
and specify their directions to point towards the inside of shape
as depicted by Fig. 2(c). Our GCMLS algorithm requires to inter-
polate not only the normal vectors of the shape boundaries but
also interpolate those of generated level sets with the gradients
of the implicit Chebyshev polynomial function. Supposed that all
the generated level sets consist of n; points, denoted by {(x;,y;),
i=ng+1,n9g+2,...,n9+ny}, where ng is the number of points
on the shape boundaries, then, we can collect all the ny + n; points
together to produce a new system of equations and then solve it to
obtain the ICMs. Its formulation is similar to (6). This is the com-
putational procedure for GCMLS fitting algorithm. Fig. 2(c) shows
the original crown shape boundary together with all the generated
level sets and their normal vectors. We fitted an implicit Cheby-
shev polynomial function of degree 10 to them. Fig. 1(e) shows
the graph of the fitted implicit Chebyshev polynomial function, and
Fig. 1(c) shows its zero set. From these two figures, we can see that
the use of the proposed GCMLS fitting algorithm can significantly
improve the fitting accuracy of implicit Chebyshev polynomials.
Unlike the fitting result of the crown shape using the Min-Max al-
gorithm in Fig. 2(a), the fitted zero set shown in Fig. 1(c) contains
no any artifact and outlier. On the other hand, it is clear from the
Fig. 1(e) that the fitted implicit Chebyshev polynomial function is
a curved surface, having only six local maximal points. This means
that the implicit Chebyshev polynomials of lower degree, namely,
fewer parameters, can represent the crow shape accurately.

It should be noted that unlike 3L fitting algorithm [3] which
forces the fitted function to reach a fixed value at all points on the
same level set, the GCMLS fitting algorithm only uses the gradients
of the level sets generated from the original data sets (shape), and
hence, it does not introduce extraneous information.

Although the GCMLS algorithm works well, the two issues still
remain unsolved. The first one is how to determine the distance
between two adjacent level sets. Another is how to determine the
degree of fitted implicit Chebyshev polynomial. These two prob-
lems are discussed in the following sections.

3.4. Determination of degrees of implicit Chebyshev polynomials

For efficient representation of object shapes, we need to choose
as low a degree as possible for an implicit Chebyshev polynomial
under certain criterion of fitting accuracy specified. As noted in
[22], choosing a moderate degree for a fitted polynomial is difficult
problem. Generally, its degree is determined by trying different de-
grees several times and selecting the best one from the results.
Clearly, this method is low efficient due to the high computational
cost. Implicit Chebyshev polynomials exhibit a good property: low-
order ICMs describe the global features of a shape and high-order
ICMs capture its fine details. Parseval theorem [12] also illustrates
this idea. For a given continuous function of two variables f(x, y)



140 G. Wu and L. Xu/Pattern Recognition Letters 128 (2019) 137-145

150

100

50

(a) (b) (c)

(d) (e)

Fig. 1. (a) The original crown shape. (b) The shape of the reconstructed crown with Chebyshev moments up to the tenth order. (c) The shape of the reconstructed crown
with implicit Chebyshev moments up to the tenth order. (d) The graph of the Chebyshev approximated function obtained by using Chebyshev moments. (e) The graph of
the implicit Chebyshev polynomials function obtained by using implicit Chebyshev moments.

and its Chebyshev series expansion Y {°, Z]?io ¢ijPj(x,y), denoted
by S;, we have the following equation

Yo Y ci=Clf&yl?

i=0 j=0

where C is a constant. The above equation is called Parseval’s for-
mula. It is clear from this formula that the Chebyshev series S;
is convergent, and cl.zj approaches zero as i and j tend to infin-
ity. Hence, the partial sum of the Chebyshev series S; approach
Ifix, Y)II? as i, j are sufficiently large. Similarly, denoting an im-
age of size NxM by {f(i,j),i=1,2,....N;j=1,2,..., M}, apply-
ing Chebyshev transformation to the image to get Chebyshev mo-
ments, denoted by ¢;;,i=0,1,2,...,N;j=0,1,2,..., M, we have
the version for discrete data of Parseval’s formula

N M N M
Y= fi.j)? (7)
i=0 j=0 i=1 j=1

For convenience of discussion, we make the following nota-
tion.

N M ko1
SO:ZZC%’ Sk:zzcizj’ S(k):So—Sk
i=0 j=0 i=0 j=0

where N<M,k=1,2,...,N;l = |[kxM/N], |[l| denotes the integer
part of I Then, it follows from the above analysis that S(k) de-
creases as k increases. This means that S(k) is a decreasing function
and take approximately a fixed value as k is greater than a certain
value. We name S(k) a coefficient order function(COF) of Chebyshev
transformation for a given image. Fig. 3 illustrates the coefficient
order function of Chebyshev transformation for the crown shape
shown in Fig. 1(a). In this figure, the maximum curvature point,
the curvature point with curvature value being equal to 1, the last
curvature point with curvature value being equal to 0.1 on the
curve for coefficient order function are also shown and their mag-
nification are further shown in Fig. 3(b). We call the three points
changing point, accurate point and stable point, respectively. It is
clear from the two figures that we can find at changing point, the
coefficient order function value begins to decrease slowly and fur-
thermore, gradually becomes approximately constant at the stable
point. This implies that an implicit Chebyshev polynomial curves
will represent the crow shape well when its degree is chosen to
be greater than the abscissa of the changing point. In particular, an
implicit Chebyshev polynomial curve will represent the crow shape

stably when its degree is chosen to be equal to the abscissa of the
stable point. That is, the implicit Chebyshev polynomial curve can
not improve its representation accuracy when its degree is cho-
sen to be greater than the abscissa of the stable point. In order to
give a tradeoff between the representation accuracy and represen-
tation efficiency, we choose the abscissa of accurate point as the
moderate degree for fitted implicit Chebyshev polynomial curve if
abscissa of accurate point is greater than the one of the changing
point and smaller than the one of the stable point. Otherwise we
choose the abscissa of the stable point as the suitable degree.

As an example, Fig. 3 shows the graph of the coefficient or-
der function of the distance transformation image generated from
the crown shape, along with the changing point, accuracy point
and stable point. Clearly, their abscissas are 1216 and 28, respec-
tively. According to above algorithm, we should choose 16 as the
degree of implicit Chebyshev polynomial curve to represent the
crown shape. Actually, experimental results in Section 5 demon-
strate that the implicit Chebyshev polynomial of degree 16 can
very accurately represent the crown shape.

After choosing the degrees of implicit Chebyshev polynomials,
we need to determine the moderate distance between two adja-
cent level sets so that we can generate a series of level sets from
the interior and exterior of the shape. Clearly, choosing the over
small distance will produce too many level sets, leading to high
computation cost and overfitting. Conversely, choosing the over
large distance can not produce enough level sets, leading to fail-
ure in representation of shapes. Supposed that we use an implicit
Chebyshev polynomial of degree k to represent a binary image of
size NxM {f(i,j),i=1,2,....,N;j=1,2,...,M},N > M, then the
Chebyshev nodes along the horizontal direction are as follows

(i- 3

xi=cos<k),(i:1,2,...,k) (8)

Computing the distance D; between every two adjacent Chebyshev
nodes, we have

(i=1,2,....k=1) 9)

It is easy to verify that D; and D, are the first and the second min-
imum values of the set {D;}, respectively. In order to ensure the
accuracy of the representation, the distance between any two in-
terpolated data points is not larger than the minimum distance be-
tween any two Chebyshev nodes. That is, the distance is not larger
than D;. Considering that x; is the abscissa of leftmost point in an
image and usually far away from the boundary of shapes, then, the

D; = |xi 1 — Xil,
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Fig. 3. (a) Coefficient order function for distance image of the crown shape shown in Fig. 1(a). (b) Magnification of (a) in the vicinity of the maximum curvature point.

distance is required to be smaller than or equal to D,. Hence, de-
noting the distance between two adjacent level sets by G;, we have

G =D:N (10)

This implies that for a binary image of size N x M(N > M), if using
an implicit Chebyshev polynomial of degree k to represent it, then,
we should ensure the distance of any two adjacent level sets is not
larger than D,N. This provides a method for the GCMLS algorithm
to obtain the suitable level sets from the given binary image.

We call the above methods for determining the degree for im-
plicit Chebyshev polynomial and distance between two adjacent
level sets Parseval algorithm.

4. The geometry invariants based on implicit Chebyshev
polynomials

As discussed in Section 1, both algebraic invariants and geomet-
ric invariants can be derived from an implicit Chebyshev polyno-
mial. In this section, we focus on its geometric invariants because

geometric invariants are easy to compute and insensitive to noise
and slight deformation. Clearly, the ratio of the implicit Chebyshev
polynomial function values at any two points is a kind of geo-
metric invariants under Euclid or affine transformation. From this
property, we can derive area invariants and perimeter invariants.
Specifically, For a given implicit Chebyshev polynomial function
flx, y), computing its maximum value(denoted by M), letting v;
iM/m,i=0,1,2,...,m, where m takes integer values and smaller
than M, then we can create m + 1 level curves by letting f(x,y) =
v;,i=0,1,2,...,m. Denoting the areas of m+ 1 level curves by
A;,i=0,1,2,...,m and perimeters by P,,i=0,1,2,...,m, we re-
spectively define area invariants {A;} and perimeter invariants {£}
as follows

AizA,-/Ai_l,izl,Z,...,m

P=P/P4i=12,....m (11)

These m area invariants and m perimeter invariants can be used
to recognize shapes undergoing Euclid or affine transformation.
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Fig. 4. Image reconstruction of a complicated crown shape under eight different
affined transformations.

5. Experimental results

In this section, we illustrate the effectiveness of the implicit
Chebyshev polynomial representation through competing it with
traditional Chebyshev polynomial moments. To make comparative
evaluation possible, we set our experiments in some precondition.
The degrees for implicit Chebyshev polynomials and distance be-
tween two adjacent level sets are determined using Parseval algo-
rithm in the experiments unless otherwise specified. The results of
fitted implicit Chebyshev polynomials are evaluated using recon-
struction error € [14]. The formula for the error € is

e=> S IfG.j) - fa. )l (12)

i=1 j=1

where f(i, j) indicates the original image and f (i, j) indicates re-
constructed image.

5.1. Comparison of the representation power

For the comparison of the relative performance between im-
plicit Chebyshev moments and Chebyshev moments, we respec-
tively applied three affine transformations to a complex crown im-
age shown in Fig. 4 (a), specifically, shearing the image by shear
factor of 0.5 along horizontal direction, respectively scaling the im-
age by the scale factor of 0.5 along the horizontal direction and
vertical direction. The transformed images are shown in Fig. 4 (b)-
(d), respectively. Furthermore, we rotated the four images by de-
gree 65 in the counterclockwise direction. The rotated images are
shown in Fig. 4 (e)-(h). We reconstructed a sequence of each
crown image respectively using ICMs and CMs as the maximum
order of moments used in the reconstruction is varied from eight
to 24 with a step size of eight. The sequences of reconstructed im-
ages are shown in Fig. 4. We can see that the reconstructed images
using ICMs can capture the general feature of crown images when
the maximum order of moments is eight and capture the fine de-
tails when 24. However the reconstructed images using CMs can-
not exhibit the same representation accuracy. The corresponding
reconstruction errors shown in Fig. 4 also illustrate these.

Table 1
Area invariant values of ICMs for crown shapes.

Area invariants Al A2 A3 A4 A5 A6 A7 A8

0.6441 0.5120 0.4223 0.3345 0.2625 0.1982 0.1415 0.0945
0.6186 0.4954 0.3946 0.2993 0.2274 0.1617 0.1111 0.0710
0.6224 0.5104 0.4139 0.3252 0.2544 0.1907 0.1339 0.0862
0.6239 0.4976 0.4055 0.3166 0.2391 0.1757 0.1213 0.0777

0.6422 0.5163 0.4297 0.3420 0.2711 0.2090 0.1510 0.0982

0.6090 0.5042 0.4156 0.3204 0.2453 0.1834 0.1236 0.0762

0.6311 0.5192 0.4363 0.3553 0.2775 0.2098 0.1532 0.1025

0.6153 0.4973 0.4037 0.3134 0.2353 0.1689 0.1177 0.0727

IR A6

0.0351 0.0238 0.0417 0.0561 0.0502 0.0480 0.0421 0.0315

Table 2
Area invariant values of DCMs for image crown.

Area invariants Al A2 A3 A4 A5 A6 A7 A8

0.7793 0.5504 0.4452 0.3511 0.2786 0.2187 0.1571 0.1055
0.7281 0.5222 0.4057 0.3117 0.2387 0.1686 0.1142 0.0709
0.7707 0.5424 0.4357 0.3000 0.2180 0.1598 0.1104 0.0680
0.7193 0.5134 0.3775 0.2790 0.1947 0.1273 0.0792 0.0451

0.7748 0.5438 0.4414 0.3535 0.2781 0.2158 0.1563 0.1047

0.7280 0.5141 0.4012 0.3107 0.2362 0.1672 0.1132 0.0709

0.7532 0.5303 0.4312 0.3412 0.2638 0.1964 0.1368 0.0801

0.7108 0.4913 0.3736 0.2755 0.1930 0.1266 0.0783 0.0451

IR R

0.0685 0.0591 0.0716 0.0780 0.0856 0.0921 0.0788 0.0604

5.2. Comparison of ability of objection recognition

As discussed in Section 1, CMs are obtained by interpolating
an indicator function with a Chebyshev approximated function of
the two variables. So, only algebraic invariants can be derived from
CMs. However, ICMs are obtained by fitting an implicit Chebyshev
polynomial in the two variables to a curved surface, Hence, not
only algebraic invariants but also geometric invariants can be de-
rived from ICMs. Compared with algebraic invariants of CMs, the
algebraic invariants of ICMs will be more efficient to recognize ob-
jects due to their strong representation power and insensitivity to
noise.

In order to have geometric invariants of CMs, we interpolated
the distance transformation image generated from a given shape
with the Chebyshev approximated function and name the obtained
CMs as DCMs. For a fair comparison, we used the same implicit
Chbyshev polynomial of degree 30 to respectively compute ICMs
and DCMs for the eight original images in Fig. 4 and then com-
puted their eight area invariants(A;, i=1,2,...,8) and the results
are shown in Tables 1 and 2, respectively. Observing the last row in
these two tables, we can find that the range of each area invariant
A; of ICMs are consistently smaller than those of DCMs. Specifically,
all ranges of area invariants of ICMs are roughly smaller than 0.05.
However the reverse is true for DCMs. This means that the area
invariants of ICMs can be used to efficiently recognize the objects
undergoing affine transformation.

To further validate the efficiency of invariants of ICMs for
recognition of objects, we randomly selected ten complex im-
ages from an image data set created by the Laboratory for Engi-
neering Man/Machine System, Brown University, and then respec-
tively fitted implicit Chebyshev polynomial functions to these ten
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Fig. 5. The graphs of the ten fitted implicit Chebyshev polynomial functions.

Table 3
Area invariant values of ICMs for some shapes.

Area invariants A1l A2 A3 A4 A5 A6 A7 A8

0.8298 0.7078 0.5988 0.4149 0.2143 0.1308 0.0653 0.0258
0.9153 0.7931 0.6980 0.6144 0.4405 0.2639 0.1735 0.1196
0.8064 0.6084 0.4474 0.3414 0.2607 0.1951 0.1437 0.0961
0.8161 0.5629 0.3710 0.2389 0.1610 0.1101 0.0795 0.0558
0.7669 0.5721 0.4475 0.3614 0.2858 0.2193 0.1629 0.1126
0.9798 0.7029 0.4481 0.2324 0.1246 0.0864 0.0671 0.0510
0.7701 0.5978 0.4274 0.2836 0.1605 0.0967 0.0543 0.0256
0.7717 0.6538 0.5627 0.4780 0.3964 0.3093 0.2251 0.1475
0.9704 0.9233 0.8388 0.3982 0.3342 0.2751 0.2214 0.1648

0.8907 0.5185 0.3443 0.1961 0.0932 0.0416 0.0255 0.0184

L P

images. The graphs of these ten fitted implicit polynomial func-
tions are shown in Fig. 5. It is clear that all the graphs are curved
surfaces and Fig. 5 (b), (i) and (j) show that the three curved sur-
faces exhibit very complicated structure. The reason is that their
corresponding object shapes (row 2, 9, 10 and first column in
Table 3) are complicated. We computed the area invariants for the
ten images and resulting area invariant values (4;,i=1,2,...,8)
are shown in Table 3. To measure the similarity between the orig-
inal crown shape and each of these ten shapes, we computed Eu-
clid distances between the area invariant vector of original crown
shape (the first row in Table 1) and the area invariant vectors of
the ten shapes (row 1 through 10 in Table 3), respectively. The re-
sulting Euclid distances are 0.3575, 0.5870, 0.1906, 0.2596, 0.1478,
0.4463, 0.2427, 0.3417, 0.6895, 0.3981. Clearly, all the Euclid dis-
tances are greater than 0.1. On the other hand, we also computed
the Euclid distances between the area invariant vector of the orig-
inal crown shape and the ones of the transformed crown shape
(row 2 through 8 in Table 1), respectively. The resulting Euclid dis-
tances are 0.0835, 0.0297, 0.0544, 0.0206, 0.0521, 0.0375, 0.0669.

o

o
1=

w
o

=)
=3

The order of Chebyshev polynomials

1 2 3 4 5 6 i 8 9 10
The serial number of the ten shapes

Fig. 6. The comparison of the efficiency and recognition ability.

It is easy to see that all the Euclid distances are smaller than 0.1.
This means that the area invariants of ICMs enable us to identify
the transformed images from other images.

To evaluate the efficiency and recognition ability of the pro-
posed algorithm, we reconstructed the above ten shapes from CMs,
DCMs and ICMs, respectively, and then compared the efficiency
and recognition ability of the three moments under the same re-
construction errors. Specifically, we reconstruct a given shape im-
age with moments of up to order n and then binarize recon-
structed image, followed by computing the reconstruction error
between the obtained binary image and the original shape im-
age using the formula (12). If the reconstruction error is greater
than a threshold value(e.g. 10), we reconstruct the shape image
with moments of up to order n+ 1 and repeat the above process,
otherwise the reconstruction process stops and the maximum or-
der n is recorded. This means that the moment items from or-
der zero up to the recorded order n can almost completely repre-
sent the given shape. Obviously, the recorded order is the required
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Fig. 7. (a) The comparison of computational costs. (b) The comparison of the efficiency and recognition ability.

maximum order for representing the shapes. In this way, we can
obtain the maximum orders of CMs, DCMs and ICMs for represent-
ing these ten shapes.

Fig 6 shows these obtained maximum orders. From this fig-
ure, we can find that CMs and DCMs need moments of approxi-
mately the same maximum orders for representing these shapes.
However, ICMs need nearly half the maximum orders of CMs and
DCMs. This means that the proposed algorithm exhibits stronger
representation power. On the other hand, due to the lower com-
putational costs and the smaller computational errors, ICMs exhibit
much higher recognition ability than CMs and DCMs. For instance,
we use algebraic invariants proposed in [23] to recognize a shape.
If the algebraic invariants obtained by using 25 moment items of
CMs can be used to efficiently recognize a given shape, only 5 mo-
ment items of ICMs can reach the same recognition accuracy. This
can greatly reduce the computational errors and accordingly signif-
icantly improve recognition accuracy because algebraic invariants
obtained from computation of moments are sensitive to computa-
tional errors. Fig. 7(a) shows the total number of multiplications
required to evaluate the moments of CMs, DCMs and ICMs for the
ten shapes. Clearly, the computational costs of ICMs are far lower
than the costs of CMs and DCMs. Fig. 7(b) shows the errors in rec-
ognizing the crown shape shown in Fig. 4(a) by using DCMs and
ICMs, respectively. From the figure, we see that the recognition
error rates of ICMs are more than half the ones of DCMs. This is
consistent with the conclusion of ICMs which have stonger repre-
sentation power and smaller computational errors than DCMs and
CMs.

6. Conclusion

In this paper, we introduce Implicit Chebyshev Moments (ICMs)
for representation of complex shapes and present the Gradient
Constraints of Multiple Level Set(GCMLS) algorithm to fit an im-
plicit Chebyshev polynomial curve to a shape. Based on analysis
of properties of Chebyshev polynomials, we also develop an algo-
rithm for determination of a suitable degree for fitting an implicit
Chebyshev polynomial function to a given shape and a method to
determine the suitable distance between two adjacent level sets
when using GCMLS for fitting. In simulations, we compared ICMs
with CMs in reconstructing some complex shapes using the same
maximum order of moments, and the experimental results demon-
strate that the representation power of ICMs performs consistently
better than that of CMs. We also computed the area invariants of
ICMs for some complex shapes and their transformed versions. The

resulting invariants illustrate their ability of efficient recognition of
these complex shapes.

Future work should study more efficient geometry variants of
ICMs and extend ICMs for 2D shapes to for 3D objects
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