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a b s t r a c t 

Chebyshev Moments(CMs) have been applied to representation and recognition of 2D object shapes in 

image processing and computer vision. However they still suffer from poor representation power and dif- 

ficulty in computing invariants for shapes. In this work, we present Implicit Chebyshev Moments (ICMs) 

to overcome these issues. Firstly, we use Euclid distance transformation to generate a series of level sets 

based on a given shape. Secondly, we fit an implicit Chebyshev polynomial to the data set consisting of 

the obtained level sets together with all the boundary points on the original shape and call the obtained 

coefficients of the fitted implicit Chebyshev polynomial ICMs. Finally, we propose a new approach to de- 

rive geometric invariants based on ICMs. In addition, we also develop an algorithm for the determination 

of a suitable degree for implicit Chebyshev polynomials before representing a given shape. Experimental 

results show the ICMs are more efficient for representing complex shapes than CMs. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Shape is one of the important perceptual features in im-

ge analysis, object recognition and content-based image retrieval

aradigm. In order to extract the features of shapes, many shape

epresentation methods have been developed during the past

ecades. Generally, these methods can be categorized into two

ypes: contour-based representations and region-based representa-

ions. Compared with contour-based representations, region-based

epresentations are applicable to more generic shapes (e.g., shapes

ith holes, or consisting of multiple disconnected regions) due

o their ability to exploit both boundary and interior content of

hapes. Among the region-based representations, moments, in par-

icular Chebyshev moments(CMs) [13,14] , are commonly used ap-

roaches. CMs exhibit superior representation capability over other

oments (e.g. Legendre moments [21] , Zernike moments [4] ). The

ain reason is that their basis functions are orthogonal in the do-

ain of image coordinate space, which can eliminate the require-

ent for any discrete approximation to avoid introducing quanti-

ation errors. On the other hand, the application of CMs to object

ecognition needs computation of their invariants. Hence, many

ethods for computation of invariants have been proposed. For

xample, the translation, scale and affine invariants of Chebyshev

oments were also proposed in [10,11,19,20,23] . The results of ex-

eriments in these literatures demonstrate that the invariants of
� Editor: Prof. S. Sarkar. 
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Ms can work better than other moment invariants in terms of

cale, rotation and affine invariant recognition in noisy, noise-free

nd smooth distortion condition. 

Despite the advantages mentioned above, Chebyshev moment

epresentation for shapes still suffers from three major issues as

ollows: 

1. Poor feature representation capability for shapes. A shape ap-

pears to be a binary image as shown in Fig. 1 (a), usually

to be set to one the pixels located inside the shape and to

zero the pixels located outside. The use of Chebyshev approx-

imated function of two variables to represent a given shape

means that the function is used to approximate an indicator

function. Fig. 1 (d) shows the graph of the indicator function

reconstructed from Chebyshev moments, consisting of shape

plane(red regions) and background plane (blue regions). Obvi-

ously, the representation of an indicator function needs higher

order Chebyshev moments, namely, higher degree Chebyshev

polynomials. The reason is that the function is discontinuous

at the boundary points of the shape, and accordingly leading to

weaker representation capability for shapes. 

2. Inefficient Chebyshev moment invariants for object recognition.

Low-order Chebyshev moments describe the global features of

a shape and high-order moments capture its fine details. For a

complex shape, we need to combine numerous high-order and

low-order moments to describe the shape due to the poor fea-

ture representation capability of Chebyshev moments. However,

high-order moments are sensitive to slightly deformed shapes

(e.g. original shapes resulting from color noise [16] ), which usu-

ally leads to failing to recognize complex objects. 

https://doi.org/10.1016/j.patrec.2019.08.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.08.031&domain=pdf
mailto:wugang69@gmail.com
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3. High computational cost. Chebyshev moment invariants pro-

posed in [11,20,23] belong to a family of the algebraic invari-

ants. As pointed out in [15,20] , computation of these algebraic

invariants inherits the complexities from the Chebyshev poly-

nomials defined in terms of hypergeometric functions and ac-

cordingly needs to use algebraic iteration and performs linear

combinations of original Chebyshev moments. These two com-

putation procedures not only lead to high computational cost

but also tend to introduce accelerated errors. 

In this work, we propose Implicit Chebyshev Moments (ICMs)

as a representation method for eliminating the above three weak-

nesses. ICMs can efficiently describe the shapes, especially compli-

cated shapes. The complicated shapes mean that the shapes can

only be represented by the implicit polynomials of degree greater

than six in theory, including shapes composed of a few discon-

nected components, shapes that intersect themselves, and shapes

with holes [8] . The lower order ICMs work as well as the higher

order CMs in representing the same shape. The basic reason for

this is that ICMs are obtained by approximating a continuous func-

tion, but the reverse is true for CMs. As an example, we respec-

tively used CMs and ICMs of order up to 10 to represent the same

crown shape (see Fig. 1 (a)). Their reconstructed shapes are shown

in Fig. 1 (b) and (c), respectively. From the two plots, we can see

that the CMs of order up to 10 fail to represent the crow shape.

Conversely, the ICMs can work well. Most importantly, both alge-

braic invariants and geometric invariants can be derived based on

ICMs, However, only algebraic invariants for CMs. The further de-

tailed discussion on these will be given in the following sections. 

This paper is organized as follows. Below we discuss the back-

ground. Particularly, we review the definition and formula for

Chebyshev polynomial in two variables, and focus on interpola-

tion of discrete data sets with Chebyshev approximated function.

In Section 3 , we first define an implicit Chebyshev polynomial

curve and then discuss how to fit an implicit Chebyshev poly-

nomial curve to the generated level sets together with all the

boundary points on the given shape. In addition, we develop an

algorithm for determination of a moderate degree for the fitted

implicit Chebyshev polynomial and a method to determine the dis-

tance between two adjacent level sets before generating level sets.

Section 5 presents simulation results obtained in comparing ICMs

with CMs in representing complex shapes. Section 6 summarizes

and concludes the paper. 

2. Chebyshev polynomials in two variables approximation 

A Chebyshev polynomial in two variables P ij ( x, y ) are defined as

P i j (x, y ) = T i (x ) T j (y ) (1)

where T i ( x ) and T j ( y ) are Chebyshev polynomials of the first kind.

They are polynomials in x of degree i and y of degree j , respec-

tively. In general, the formula for a Chebyshev polynomial T m 

( t ) is

given by T m 

(t) = cos (m arccos (t)) . 

The Chebyshev polynomials are frequently used to approximate

a continuous function or to interpolate a discrete data set. For a

given 2-D data set { z kl } , k = 1 , 2 , . . . , N; l = 1 , 2 , . . . , M, we can con-

struct a linear combination of the Chebyshev polynomial function

of two variables P ij ( x, y ), denoted by f ( x, y ), to interpolate the

data set { z kl } at the associated coordinate points {( x k , y l )}, where

x k and y l are given by x k = cos (k − 0 . 5) π/N, (k = 1 , 2 , . . . , N) and

y l = cos (l − 0 . 5) π/M, (l = 1 , 2 , . . . , M) , respectively. Then, accord-

ing to [12] , the formula for the function f ( x, y ) takes the following

form 

f (x, y ) = 

N−1 ∑ 

i =0 

M−1 ∑ 

j=0 

c i j P i j (x, y ) (2)
here the formula for computation of the coefficients c ij can be

ound in [5,12,17] 

The interpolation function f ( x, y ) in (2) is called Chebyshev ap-

roximated function. Clearly, the function f ( x, y ) satisfies the equa-

ions f (x k , y l ) = z kl , k = 1 , 2 , . . . , N; l = 1 , 2 , . . . , M. Note that the

oefficients c ij are 2-D discrete cosine transformation coefficients,

hich can be computed by using fast Fourier transform algorithm

12] or fast computation algorithm proposed in [1,2,9] . { c i j , i =
 , 1 , . . . , N − 1 , j = 0 , 1 , . . . , M − 1 } are also called Chebyshev mo-

ents. 

From the formula (2) , It follows that reconstruction of the poly-

omial of two variables f ( x, y ) of degree n requires n 2 multi-

lications of moments and Chebyshev polynomials. Implementing

oments up to the nth order requires the total number of multi-

lications (denoted by S ( n )) as follows [18] : 

(n ) = n 

2 / 2 + 3 n/ 2 + 1 (3)

. Representation of shape using implicit Chebyshev 

olynomial curves 

Observing Fig. 1 (c), we can find that a shape completely de-

ends on all the boundary points on the shape and no any other

nformation is contained inside and outside of the shape. However,

he CMs representations introduce a great deal of extraneous in-

ormation (e.g. set 1 to pixels located inside of shapes and 0 to

he pixels located outside as shown in Fig. 1 (a)) so as to be able

o apply Chebyshev moments to the representation of the shape.

his leads to the inefficiency of the CMs representations. In order

o avoid the problem, we propose a method for the representation

f a shape based on implicit Chebyshev polynomial curves by only

sing the shape boundary information instead of its associated bi-

ary image. 

.1. Formulation 

Formally, an implicit Chebyshev polynomial curve is defined by

he equation f (x, y ) = 0 , where the formula for f ( x, y ) is the same

s (2) . We also call the function f ( x, y ) the implicit Chebyshev poly-

omial function. For convenience, The equation f (x, y ) = 0 can be

ewritten in vector form. Specifically, we first construct a matrix

onsisting of elements c ij in (2) . Then, we map the matrix to a vec-

or A by stacking the rows of the matrix. 

 = [ c 00 c 01 . . . c 0(M−1) c 10 c 11 . . . c 1(M−1) . . . 

c (N−1)0 c (N−1)1 . . . c (N−1)(M−1) ] 
T 

learly, A is the ( NM × 1) coefficient column vector of implicit

hebyshev polynomial function. 

In a similar way, the ( NM × 1) column vector function of mono-

ials of implicit Chebyshev polynomial function in (2) , denoted by

 ( x, y ), can be given by 

 (x, y ) = [ P 00 (x, y ) P 01 (x, y ) . . . P 0(M−1) (x, y ) . . . 

P (N−1)0 (x, y ) . . . P (N−1)(M−1) (x, y )] T 

Combining the two above generated vectors, we can rewrite the

quation defining implicit Chebyshev polynomial curves in vector

orm as follows 

f (x, y ) = X (x, y ) T A = 0 (4)

Denoting the number of coefficients of f ( x, y ), as well as the di-

ension of the coefficient vector A , with r , we have r = NM. We

lso call f (x, y ) = 0 the equation for implicit Chebyshev polyno-

ials curve of degree r and call the coefficient vector ( A ) implicit

hebyshev moments (ICMs). Actually, an implicit Chebyshev poly-

omial curve consists of all points( x, y ) at which the values of the

mplicit Chebyshev polynomial function f ( x, y ) are zeros. The set of
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hese points, denoted by Z f , is called the zero set of implicit Cheby-

hev polynomial function f ( x, y ). It should be noted that the main

ifference between ICMs and CMs is that ICMs are obtained by fit-

ing an implicit Chebyshev polynomial curve to a shape, but CMs

re obtained by applying the 2-D discrete cosine transformation

o the associated binary image of the shape. ICMs do not belong

o a kind of implicit moment invariants discussed in [6] . The rea-

on is that implicit moment invariants have nothing common with

mplicit curves and implicit polynomials and they are proposed to

ifferentiate explicit moment invariants because implicit moment

nvariants only provide description of a pair of images rather than

 single image. 

.2. Fitting implicit Chebyshev polynomial curves to shapes 

As mentioned in Section 1 , in order to improve the feature rep-

esentation capability for shapes, we only represent the shape with

mplicit Chebyshev polynomials, namely, fit an implicit Chebyshev

olynomial curve to the shape boundary. The fitting problem is

o find ICMs that lead to an implicit Chebyshev polynomial curve

hat best fits the given shape boundary. Specifically, for a given

hape boundary, denoted by �0 , consists of (x i , y i ) , i = 1 , 2 , . . . , n 0 ,

CMs fitting requires all points( x i , y i ) satisfy the system of equa-

ions f (x i , y i ) = 0 , i = 1 , 2 , . . . , n 0 , or, in vector form, 

 

T 
0 A = 0 (5) 

here M 0 = [ X(x 1 , y 1 ) , X(x 2 , y 2 ) , . . . , X(x n 0 , y n 0 )] . In general, due to

 0 � NM , the classical least-squares algorithm can be used to solve

he above system of equations to obtain the ICMs ( A ). However,

he obtained ICMs usually have poor representation of shapes. The

ain reason is that the system of equations belongs to the type

f homogeneous linear system of equations [3] . In order to over-

ome this problem, we use Min-Max method [7] to fit the implicit

hebyshev polynomial curve. 

Defining X x ( x, y ) and X y ( x, y ) as the partial derivative vector

unction of the monomials vector function X ( x, y ) with respect to

 and y, respectively, and denoting the local unit normal vector at

he boundary point ( x i , y i ) on the shape by ( v i , w i ), we can con-

truct two matrices: one is denoted by M x , each column of which

s X x (x i , y i ) , i = 1 , 2 , . . . , n 0 and another M y , each column is X y ( x i ,

 i ). In addition, we construct two vectors: v = 

[
v 1 v 2 . . . v n 0 

]
and

 = 

[
w 1 w 2 . . . w n 0 

]
. Combing M 0 , M x and M y to form a big ma-

rix: M = [ M 0 M x M y ] 
T , v and w to form a vector: b = [0 v w ] ,

here 0 represents a row vector of zeros of length n 0 , then, we

ave the system of equations MA = b. Using the linear least squares

lgorithm to solve the above equation, we can obtain the coef-

cient vector (ICMs) of the fitted implicit Chebyshev polynomial

urve: 

 = (M 

T M ) −1 M 

T b (6)

Note that the local unit normal vector ( v i , w i ) can be estimated

y calculating the normal vector to a regression line which is fitted

o several points in the neighborhood of the point ( x i , y i ) on the

iven shape boundary. We fitted implicit Chebyshev polynomial

urve to the crow shape boundary in Fig. 1 (a) with Min-Max al-

orithm. The Fig. 2 (a) shows the fitting result. From the figure, we

an see that the zero set of fitted implicit Chebyshev polynomial

ails to represent the crown shape due to the presence of the nu-

erous artifacts and outliers around the shape boundaries. In or-

er to improve the fitting accuracy, we fit gradients of the implicit

hebyshev polynomial function to the normal vectors of level sets

enerated from shape by using distance transform [3] , with the de-

ired result that the fitted implicit Chebyshev polynomial functions

ave as few extreme points as possible. We name this algorithm as

radient constraints of multiple level sets (GCMLS) fitting methods,

hich will be further detailed in the next section. 
.3. Fitting implicit Chebyshev polynomials with multi level sets 

The Min-Max algorithm forces the gradients of the fitted im-

licit Chebyshev polynomial function to have similar orientations

o the normal vectors of the shape image. This can be viewed

s interpolation of normal vectors of the shape image with the

econd-kind Chebyshev approximated function. Clearly, the inte-

ior and exterior of the shape contain no any interpolated normal

ectors, and thus leading to the failure in fitting implicit Cheby-

hev polynomial curves as illustrated in Fig. 2 (a). In order to elim-

nate this issue, we need to impose some constraints on interior

nd exterior of the shape without introducing extraneous informa-

ion, specifically, generating a series of level sets with Euclidean

istance transformation and computing their corresponding nor-

al vectors. As an example, Fig. 2 (b) illustrates these level sets.

he distance between any two adjacent level sets is set to 5. We

ompute the normal vectors at every point on these level sets,

nd specify their directions to point towards the inside of shape

s depicted by Fig. 2 (c). Our GCMLS algorithm requires to inter-

olate not only the normal vectors of the shape boundaries but

lso interpolate those of generated level sets with the gradients

f the implicit Chebyshev polynomial function. Supposed that all

he generated level sets consist of n 1 points, denoted by { (x i , y i ) ,

 = n 0 + 1 , n 0 + 2 , . . . , n 0 + n 1 } , where n 0 is the number of points

n the shape boundaries, then, we can collect all the n 0 + n 1 points

ogether to produce a new system of equations and then solve it to

btain the ICMs. Its formulation is similar to (6) . This is the com-

utational procedure for GCMLS fitting algorithm. Fig. 2 (c) shows

he original crown shape boundary together with all the generated

evel sets and their normal vectors. We fitted an implicit Cheby-

hev polynomial function of degree 10 to them. Fig. 1 (e) shows

he graph of the fitted implicit Chebyshev polynomial function, and

ig. 1 (c) shows its zero set. From these two figures, we can see that

he use of the proposed GCMLS fitting algorithm can significantly

mprove the fitting accuracy of implicit Chebyshev polynomials.

nlike the fitting result of the crown shape using the Min–Max al-

orithm in Fig. 2 (a), the fitted zero set shown in Fig. 1 (c) contains

o any artifact and outlier. On the other hand, it is clear from the

ig. 1 (e) that the fitted implicit Chebyshev polynomial function is

 curved surface, having only six local maximal points. This means

hat the implicit Chebyshev polynomials of lower degree, namely,

ewer parameters, can represent the crow shape accurately. 

It should be noted that unlike 3L fitting algorithm [3] which

orces the fitted function to reach a fixed value at all points on the

ame level set, the GCMLS fitting algorithm only uses the gradients

f the level sets generated from the original data sets (shape), and

ence, it does not introduce extraneous information. 

Although the GCMLS algorithm works well, the two issues still

emain unsolved. The first one is how to determine the distance

etween two adjacent level sets. Another is how to determine the

egree of fitted implicit Chebyshev polynomial. These two prob-

ems are discussed in the following sections. 

.4. Determination of degrees of implicit Chebyshev polynomials 

For efficient representation of object shapes, we need to choose

s low a degree as possible for an implicit Chebyshev polynomial

nder certain criterion of fitting accuracy specified. As noted in

22] , choosing a moderate degree for a fitted polynomial is difficult

roblem. Generally, its degree is determined by trying different de-

rees several times and selecting the best one from the results.

learly, this method is low efficient due to the high computational

ost. Implicit Chebyshev polynomials exhibit a good property: low-

rder ICMs describe the global features of a shape and high-order

CMs capture its fine details. Parseval theorem [12] also illustrates

his idea. For a given continuous function of two variables f ( x, y )



140 G. Wu and L. Xu / Pattern Recognition Letters 128 (2019) 137–145 

Fig. 1. (a) The original crown shape. (b) The shape of the reconstructed crown with Chebyshev moments up to the tenth order. (c) The shape of the reconstructed crown 

with implicit Chebyshev moments up to the tenth order. (d) The graph of the Chebyshev approximated function obtained by using Chebyshev moments. (e) The graph of 

the implicit Chebyshev polynomials function obtained by using implicit Chebyshev moments. 
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and its Chebyshev series expansion 

∑ ∞ 

i =0 

∑ ∞ 

j=0 c i j P i j (x, y ) , denoted

by S t , we have the following equation 

∞ ∑ 

i =0 

∞ ∑ 

j=0 

c 2 i j = C‖ f (x, y ) ‖ 

2 

where C is a constant. The above equation is called Parseval’s for-

mula. It is clear from this formula that the Chebyshev series S t 
is convergent, and c 2 

i j 
approaches zero as i and j tend to infin-

ity. Hence, the partial sum of the Chebyshev series S t approach

‖ f ( x, y ) ‖ 2 as i, j are sufficiently large. Similarly, denoting an im-

age of size N × M by { f (i, j) , i = 1 , 2 , . . . , N; j = 1 , 2 , . . . , M} , apply-

ing Chebyshev transformation to the image to get Chebyshev mo-

ments, denoted by c i, j , i = 0 , 1 , 2 , . . . , N; j = 0 , 1 , 2 , . . . , M, we have

the version for discrete data of Parseval’s formula 

N ∑ 

i =0 

M ∑ 

j=0 

c 2 i j = 

N ∑ 

i =1 

M ∑ 

j=1 

f (i, j) 2 (7)

For convenience of discussion, we make the following nota-

tion. 

S o = 

N ∑ 

i =0 

M ∑ 

j=0 

c 2 i j , S k = 

k ∑ 

i =0 

l ∑ 

j=0 

c 2 i j , S(k ) = S o − S k 

where N ≤ M, k = 1 , 2 , . . . , N; l = � k ∗ M/N� , � l� denotes the integer

part of l . Then, it follows from the above analysis that S ( k ) de-

creases as k increases. This means that S ( k ) is a decreasing function

and take approximately a fixed value as k is greater than a certain

value. We name S ( k ) a coefficient order function(COF) of Chebyshev

transformation for a given image. Fig. 3 illustrates the coefficient

order function of Chebyshev transformation for the crown shape

shown in Fig. 1 (a). In this figure, the maximum curvature point,

the curvature point with curvature value being equal to 1, the last

curvature point with curvature value being equal to 0.1 on the

curve for coefficient order function are also shown and their mag-

nification are further shown in Fig. 3 (b). We call the three points

changing point, accurate point and stable point, respectively. It is

clear from the two figures that we can find at changing point, the

coefficient order function value begins to decrease slowly and fur-

thermore, gradually becomes approximately constant at the stable

point. This implies that an implicit Chebyshev polynomial curves

will represent the crow shape well when its degree is chosen to

be greater than the abscissa of the changing point. In particular, an

implicit Chebyshev polynomial curve will represent the crow shape
tably when its degree is chosen to be equal to the abscissa of the

table point. That is, the implicit Chebyshev polynomial curve can

ot improve its representation accuracy when its degree is cho-

en to be greater than the abscissa of the stable point. In order to

ive a tradeoff between the representation accuracy and represen-

ation efficiency, we choose the abscissa of accurate point as the

oderate degree for fitted implicit Chebyshev polynomial curve if

bscissa of accurate point is greater than the one of the changing

oint and smaller than the one of the stable point. Otherwise we

hoose the abscissa of the stable point as the suitable degree. 

As an example, Fig. 3 shows the graph of the coefficient or-

er function of the distance transformation image generated from

he crown shape, along with the changing point, accuracy point

nd stable point. Clearly, their abscissas are 1216 and 28, respec-

ively. According to above algorithm, we should choose 16 as the

egree of implicit Chebyshev polynomial curve to represent the

rown shape. Actually, experimental results in Section 5 demon-

trate that the implicit Chebyshev polynomial of degree 16 can

ery accurately represent the crown shape. 

After choosing the degrees of implicit Chebyshev polynomials,

e need to determine the moderate distance between two adja-

ent level sets so that we can generate a series of level sets from

he interior and exterior of the shape. Clearly, choosing the over

mall distance will produce too many level sets, leading to high

omputation cost and overfitting. Conversely, choosing the over

arge distance can not produce enough level sets, leading to fail-

re in representation of shapes. Supposed that we use an implicit

hebyshev polynomial of degree k to represent a binary image of

ize N × M { f (i, j) , i = 1 , 2 , . . . , N; j = 1 , 2 , . . . , M} , N ≥ M, then the

hebyshev nodes along the horizontal direction are as follows 

 i = cos 

(
(i − 1 

2 
) π

k 

)
, (i = 1 , 2 , . . . , k ) (8)

omputing the distance D i between every two adjacent Chebyshev

odes, we have 

 i = | x i +1 − x i | , (i = 1 , 2 , . . . , k − 1) (9)

t is easy to verify that D 1 and D 2 are the first and the second min-

mum values of the set { D i }, respectively. In order to ensure the

ccuracy of the representation, the distance between any two in-

erpolated data points is not larger than the minimum distance be-

ween any two Chebyshev nodes. That is, the distance is not larger

han D 1 . Considering that x 1 is the abscissa of leftmost point in an

mage and usually far away from the boundary of shapes, then, the



G. Wu and L. Xu / Pattern Recognition Letters 128 (2019) 137–145 141 

Fig. 2. (a) Fitting result using the Min-Max algorithm. (b) Generated level sets using distance image. (c) Normal vector of each level set. 

Fig. 3. (a) Coefficient order function for distance image of the crown shape shown in Fig. 1 (a). (b) Magnification of (a) in the vicinity of the maximum curvature point. 
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istance is required to be smaller than or equal to D 2 . Hence, de-

oting the distance between two adjacent level sets by G l , we have

 l ≤ D 2 N (10) 

his implies that for a binary image of size N × M ( N ≥ M ), if using

n implicit Chebyshev polynomial of degree k to represent it, then,

e should ensure the distance of any two adjacent level sets is not

arger than D 2 N . This provides a method for the GCMLS algorithm

o obtain the suitable level sets from the given binary image. 

We call the above methods for determining the degree for im-

licit Chebyshev polynomial and distance between two adjacent

evel sets Parseval algorithm. 

. The geometry invariants based on implicit Chebyshev 

olynomials 

As discussed in Section 1 , both algebraic invariants and geomet-

ic invariants can be derived from an implicit Chebyshev polyno-

ial. In this section, we focus on its geometric invariants because
eometric invariants are easy to compute and insensitive to noise

nd slight deformation. Clearly, the ratio of the implicit Chebyshev

olynomial function values at any two points is a kind of geo-

etric invariants under Euclid or affine transformation. From this

roperty, we can derive area invariants and perimeter invariants.

pecifically, For a given implicit Chebyshev polynomial function

 ( x, y ), computing its maximum value(denoted by M ), letting v i =
M/m, i = 0 , 1 , 2 , . . . , m, where m takes integer values and smaller

han M , then we can create m + 1 level curves by letting f (x, y ) =
 i , i = 0 , 1 , 2 , . . . , m . Denoting the areas of m + 1 level curves by

 i , i = 0 , 1 , 2 , . . . , m and perimeters by P i , i = 0 , 1 , 2 , . . . , m , we r e-

pectively define area invariants { ̂  A i } and perimeter invariants { ̂  P i }
s follows 

ˆ 
 i = A i /A i −1 , i = 1 , 2 , . . . , m 

ˆ P i = P i /P i −1 , i = 1 , 2 , . . . , m (11) 

These m area invariants and m perimeter invariants can be used

o recognize shapes undergoing Euclid or affine transformation. 
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Fig. 4. Image reconstruction of a complicated crown shape under eight different 

affined transformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Area invariant values of ICMs for crown shapes. 

Area invariants A1 A2 A3 A4 A5 A6 A7 A8 

0.6441 0.5120 0.4223 0.3345 0.2625 0.1982 0.1415 0.0945 

0.6186 0.4954 0.3946 0.2993 0.2274 0.1617 0.1111 0.0710 

0.6224 0.5104 0.4139 0.3252 0.2544 0.1907 0.1339 0.0862 

0.6239 0.4976 0.4055 0.3166 0.2391 0.1757 0.1213 0.0777 

0.6422 0.5163 0.4297 0.3420 0.2711 0.2090 0.1510 0.0982 

0.6090 0.5042 0.4156 0.3204 0.2453 0.1834 0.1236 0.0762 

0.6311 0.5192 0.4363 0.3553 0.2775 0.2098 0.1532 0.1025 

0.6153 0.4973 0.4037 0.3134 0.2353 0.1689 0.1177 0.0727 

Range 0.0351 0.0238 0.0417 0.0561 0.0502 0.0480 0.0421 0.0315 

Table 2 

Area invariant values of DCMs for image crown. 

Area invariants A1 A2 A3 A4 A5 A6 A7 A8 

0.7793 0.5504 0.4452 0.3511 0.2786 0.2187 0.1571 0.1055 

0.7281 0.5222 0.4057 0.3117 0.2387 0.1686 0.1142 0.0709 

0.7707 0.5424 0.4357 0.3000 0.2180 0.1598 0.1104 0.0680 

0.7193 0.5134 0.3775 0.2790 0.1947 0.1273 0.0792 0.0451 

0.7748 0.5438 0.4414 0.3535 0.2781 0.2158 0.1563 0.1047 

0.7280 0.5141 0.4012 0.3107 0.2362 0.1672 0.1132 0.0709 

0.7532 0.5303 0.4312 0.3412 0.2638 0.1964 0.1368 0.0801 

0.7108 0.4913 0.3736 0.2755 0.1930 0.1266 0.0783 0.0451 

Range 0.0685 0.0591 0.0716 0.0780 0.0856 0.0921 0.0788 0.0604 
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5. Experimental results 

In this section, we illustrate the effectiveness of the implicit

Chebyshev polynomial representation through competing it with

traditional Chebyshev polynomial moments. To make comparative

evaluation possible, we set our experiments in some precondition.

The degrees for implicit Chebyshev polynomials and distance be-

tween two adjacent level sets are determined using Parseval algo-

rithm in the experiments unless otherwise specified. The results of

fitted implicit Chebyshev polynomials are evaluated using recon-

struction error ε [14] . The formula for the error ε is 

ε = 

n ∑ 

i =1 

n ∑ 

j=1 

| f (i, j) − ˆ f (i, j) | (12)

where f ( i, j ) indicates the original image and 

ˆ f (i, j) indicates re-

constructed image. 

5.1. Comparison of the representation power 

For the comparison of the relative performance between im-

plicit Chebyshev moments and Chebyshev moments, we respec-

tively applied three affine transformations to a complex crown im-

age shown in Fig. 4 (a), specifically, shearing the image by shear

factor of 0.5 along horizontal direction, respectively scaling the im-

age by the scale factor of 0.5 along the horizontal direction and

vertical direction. The transformed images are shown in Fig. 4 (b)–

(d), respectively. Furthermore, we rotated the four images by de-

gree 65 in the counterclockwise direction. The rotated images are

shown in Fig. 4 (e)–(h). We reconstructed a sequence of each

crown image respectively using ICMs and CMs as the maximum

order of moments used in the reconstruction is varied from eight

to 24 with a step size of eight. The sequences of reconstructed im-

ages are shown in Fig. 4 . We can see that the reconstructed images

using ICMs can capture the general feature of crown images when

the maximum order of moments is eight and capture the fine de-

tails when 24. However the reconstructed images using CMs can-

not exhibit the same representation accuracy. The corresponding

reconstruction errors shown in Fig. 4 also illustrate these. 
.2. Comparison of ability of objection recognition 

As discussed in Section 1 , CMs are obtained by interpolating

n indicator function with a Chebyshev approximated function of

he two variables. So, only algebraic invariants can be derived from

Ms. However, ICMs are obtained by fitting an implicit Chebyshev

olynomial in the two variables to a curved surface, Hence, not

nly algebraic invariants but also geometric invariants can be de-

ived from ICMs. Compared with algebraic invariants of CMs, the

lgebraic invariants of ICMs will be more efficient to recognize ob-

ects due to their strong representation power and insensitivity to

oise. 

In order to have geometric invariants of CMs, we interpolated

he distance transformation image generated from a given shape

ith the Chebyshev approximated function and name the obtained

Ms as DCMs. For a fair comparison, we used the same implicit

hbyshev polynomial of degree 30 to respectively compute ICMs

nd DCMs for the eight original images in Fig. 4 and then com-

uted their eight area invariants( ̂  A i , i = 1 , 2 , . . . , 8 ) and the results

re shown in Tables 1 and 2 , respectively. Observing the last row in

hese two tables, we can find that the range of each area invariant
ˆ 
 i of ICMs are consistently smaller than those of DCMs. Specifically,

ll ranges of area invariants of ICMs are roughly smaller than 0.05.

owever the reverse is true for DCMs. This means that the area

nvariants of ICMs can be used to efficiently recognize the objects

ndergoing affine transformation. 

To further validate the efficiency of invariants of ICMs for

ecognition of objects, we randomly selected ten complex im-

ges from an image data set created by the Laboratory for Engi-

eering Man/Machine System, Brown University, and then respec-

ively fitted implicit Chebyshev polynomial functions to these ten
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Fig. 5. The graphs of the ten fitted implicit Chebyshev polynomial functions. 

Table 3 

Area invariant values of ICMs for some shapes. 

Area invariants A1 A2 A3 A4 A5 A6 A7 A8 

0.8298 0.7078 0.5988 0.4149 0.2143 0.1308 0.0653 0.0258 

0.9153 0.7931 0.6980 0.6144 0.4405 0.2639 0.1735 0.1196 

0.8064 0.6084 0.4474 0.3414 0.2607 0.1951 0.1437 0.0961 

0.8161 0.5629 0.3710 0.2389 0.1610 0.1101 0.0795 0.0558 

0.7669 0.5721 0.4475 0.3614 0.2858 0.2193 0.1629 0.1126 

0.9798 0.7029 0.4481 0.2324 0.1246 0.0864 0.0671 0.0510 

0.7701 0.5978 0.4274 0.2836 0.1605 0.0967 0.0543 0.0256 

0.7717 0.6538 0.5627 0.4780 0.3964 0.3093 0.2251 0.1475 

0.9704 0.9233 0.8388 0.3982 0.3342 0.2751 0.2214 0.1648 

0.8907 0.5185 0.3443 0.1961 0.0932 0.0416 0.0255 0.0184 
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Fig. 6. The comparison of the efficiency and recognition ability. 
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mages. The graphs of these ten fitted implicit polynomial func-

ions are shown in Fig. 5 . It is clear that all the graphs are curved

urfaces and Fig. 5 (b), (i) and (j) show that the three curved sur-

aces exhibit very complicated structure. The reason is that their

orresponding object shapes (row 2, 9, 10 and first column in

able 3 ) are complicated. We computed the area invariants for the

en images and resulting area invariant values ( A i , i = 1 , 2 , . . . , 8 )

re shown in Table 3 . To measure the similarity between the orig-

nal crown shape and each of these ten shapes, we computed Eu-

lid distances between the area invariant vector of original crown

hape (the first row in Table 1 ) and the area invariant vectors of

he ten shapes (row 1 through 10 in Table 3 ), respectively. The re-

ulting Euclid distances are 0.3575, 0.5870, 0.1906, 0.2596, 0.1478,

.4463, 0.2427, 0.3417, 0.6895, 0.3981. Clearly, all the Euclid dis-

ances are greater than 0.1. On the other hand, we also computed

he Euclid distances between the area invariant vector of the orig-

nal crown shape and the ones of the transformed crown shape

row 2 through 8 in Table 1 ), respectively. The resulting Euclid dis-

ances are 0.0835, 0.0297, 0.0544, 0.0206, 0.0521, 0.0375, 0.0 6 69.
t is easy to see that all the Euclid distances are smaller than 0.1.

his means that the area invariants of ICMs enable us to identify

he transformed images from other images. 

To evaluate the efficiency and recognition ability of the pro-

osed algorithm, we reconstructed the above ten shapes from CMs,

CMs and ICMs, respectively, and then compared the efficiency

nd recognition ability of the three moments under the same re-

onstruction errors. Specifically, we reconstruct a given shape im-

ge with moments of up to order n and then binarize recon-

tructed image, followed by computing the reconstruction error

etween the obtained binary image and the original shape im-

ge using the formula (12) . If the reconstruction error is greater

han a threshold value(e.g. 10), we reconstruct the shape image

ith moments of up to order n + 1 and repeat the above process,

therwise the reconstruction process stops and the maximum or-

er n is recorded. This means that the moment items from or-

er zero up to the recorded order n can almost completely repre-

ent the given shape. Obviously, the recorded order is the required
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Fig. 7. (a) The comparison of computational costs. (b) The comparison of the efficiency and recognition ability. 
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maximum order for representing the shapes. In this way, we can

obtain the maximum orders of CMs, DCMs and ICMs for represent-

ing these ten shapes. 

Fig 6 shows these obtained maximum orders. From this fig-

ure, we can find that CMs and DCMs need moments of approxi-

mately the same maximum orders for representing these shapes.

However, ICMs need nearly half the maximum orders of CMs and

DCMs. This means that the proposed algorithm exhibits stronger

representation power. On the other hand, due to the lower com-

putational costs and the smaller computational errors, ICMs exhibit

much higher recognition ability than CMs and DCMs. For instance,

we use algebraic invariants proposed in [23] to recognize a shape.

If the algebraic invariants obtained by using 25 moment items of

CMs can be used to efficiently recognize a given shape, only 5 mo-

ment items of ICMs can reach the same recognition accuracy. This

can greatly reduce the computational errors and accordingly signif-

icantly improve recognition accuracy because algebraic invariants

obtained from computation of moments are sensitive to computa-

tional errors. Fig. 7 (a) shows the total number of multiplications

required to evaluate the moments of CMs, DCMs and ICMs for the

ten shapes. Clearly, the computational costs of ICMs are far lower

than the costs of CMs and DCMs. Fig. 7 (b) shows the errors in rec-

ognizing the crown shape shown in Fig. 4 (a) by using DCMs and

ICMs, respectively. From the figure, we see that the recognition

error rates of ICMs are more than half the ones of DCMs. This is

consistent with the conclusion of ICMs which have stonger repre-

sentation power and smaller computational errors than DCMs and

CMs. 

6. Conclusion 

In this paper, we introduce Implicit Chebyshev Moments (ICMs)

for representation of complex shapes and present the Gradient

Constraints of Multiple Level Set(GCMLS) algorithm to fit an im-

plicit Chebyshev polynomial curve to a shape. Based on analysis

of properties of Chebyshev polynomials, we also develop an algo-

rithm for determination of a suitable degree for fitting an implicit

Chebyshev polynomial function to a given shape and a method to

determine the suitable distance between two adjacent level sets

when using GCMLS for fitting. In simulations, we compared ICMs

with CMs in reconstructing some complex shapes using the same

maximum order of moments, and the experimental results demon-

strate that the representation power of ICMs performs consistently

better than that of CMs. We also computed the area invariants of

ICMs for some complex shapes and their transformed versions. The
esulting invariants illustrate their ability of efficient recognition of

hese complex shapes. 

Future work should study more efficient geometry variants of

CMs and extend ICMs for 2D shapes to for 3D objects 
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