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Abstract Implicit polynomials (IPs) are applied to repre-
sent 2D object shapes in image processing and computer
vision. However, it is difficult for IPs to represent complex
object shapes due to high computational cost and high insta-
bility. In this work, we present a new representation model
based on IPs, which is called fractional implicit polynomial
(FIP). Firstly, the general formula for FIP and a definition
of base are given; secondly, we investigate the properties of
FIPs and conclude that the FIP representation exhibits higher
stability and higher power than IP representation due to the
presence of the base. Thirdly, we develop an algorithm for
determination of a moderate degree for an FIP to represent a
given shape, which can be obtained by only computing the
number of stationary points on the shapes. We compare FIPs
with IPs by test on various object shapes and the results show
that the FIP is indeed sufficiently powerful to represent the
complex object shapes.

Keywords Algebraic curve · Curve and surface fitting ·
Implicit polynomial · Shape representation

1 Introduction

Implicit polynomials (IPs) have long been applied to repre-
sent 2D curves and 3D surfaces specified by discrete data in
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various fields, such as object recognition [3,9,16,20,21,24],
pose estimation [27,28], coding [8], boundary estimation
from intensity or color images [22], symmetry detection
[14,15], image database indexing [11], representation of time
series [26], etc. In contrast to other representations such as
Implicit B-Splines (IBSs) [18], Fourier descriptors, radial
basis functions [6], and Poisson equations [10], IPs have
the main advantages attracting application in various fields,
including fast fitting, few parameters, algebraic/geometric
invariants, robustness against noise and occlusion, the ease
of containment computations (by computing the sign of the
polynomial), etc. [12,29]. Specifically, IP fitting to noisy data
has low computational cost and the coefficients of IP appear
to be relatively insensitive to noise or modest changes in
the subset of boundary used, which can help in recognizing
objects rapidly.

Despite the great advantages mentioned above, IP repre-
sentation mainly suffers from three major issues as follows:

1. Difficult to accurately describe complex objects. Objects
obtained by vision modalities are often complex but IP
can only coarsely represent their global features [29].
In order to capture the local features, we must choose a
higher degree IP to represent them, but this would reduce
the feasibility and efficiency of this representation due to
its high computational cost and numerical instability. As
an example, Fig. 1a shows original dataset of the bear,
and Fig. 1b shows the corresponding result of fitting 12th
degree IP curve to this bear by using the state of the art
fitting algorithms in [29]. Obviously, although the 12th
degree IP is chosen to represent the shape of the bear,
the fitted IP curve cannot capture the enough local infor-
mation yet, i.e., the head and the foot. Therefore, further
improving the fitting result needs IP of degree greater
than 12. That is, more than 91 coefficients of IP should
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be used to represent the bear shape, which implies that
the IP has poor representations for complex objects.

2. Numerical instability and high computational cost, espe-
cially for high-degree IP representations. Numerical
instability means that even tiny errors in the coefficients
values of IPs may result in large fitting errors. This prob-
lem is due to extremely high sensitivity of high-degree
IP to small changes of dataset points [2,13]. On the
other hand, high-degree IP fitting dataset points leads
to high computational complexity because the compu-
tational complexity of the IP fitting algorithm grows
exponentially. As shown in Fig. 1b, the silhouette of bear
is represented by 12th degree IP curve. Then, for the
leading monomials of this IP, the fitting processes need
computationof the coordinate of everypoint in the dataset
to the power of 12, which results in high computational
cost and high computational error. For the above reason,
generally, only low degree IP is used to represent objects,
which greatly limits the application of IP representations.

3. Great sensitivity to preprocessing methods. The stability
of IP representations partially depends on which pre-
processing methods are chosen to scale the dataset points
[2,13]. If the coordinates of the dataset points are much
smaller than 1, then higher degree monomials of IP are
very sensitive to small changes of the dataset. On the
other hand, if these coordinates are much larger than 1,
then lower degree monomials of IP are very sensitive
to small changes of the dataset. Consequently, the aim
of preprocessing dataset points is to scale all of dataset
points so that their coordinates will be close to value 1 or
−1 [13]. That is, dataset is first translated to have the cen-
ter of the mass at origin and then data points are scaled
to be as close as possible to the unit square. However,
none of any scaling methods can achieve this aim. The
reason is that the shapes of objects are usually complex.
As shown in Fig. 1a, whatever preprocessingmethods are
used, some points (i.e., those in the head, foot, neck, and
chest) are always far away from value 1 or −1, but the
others are close to value 1 or −1, and vice versa.

Fractional polynomials were introduced and applied to
regression analysis, exhibiting good properties especially in
representing multivariable regression models [4,19]. Moti-
vated by fractional polynomials, in this work, we propose a
novel fractional implicit polynomial (FIP) as a representa-
tion method for overcoming the above three weaknesses. We
first present the concept of FIP and formulate it, and then,
explore the properties of the FIP, including its higher stabil-
ity and lower computational cost. In addition, we develop an
algorithm for the determination of a moderate degree for an
FIP before fitting a given object. Simulation results show the
FIP is more suitable for representing complex objects than
the IP.

Fig. 1 IP representation for complex objects: a original object, b 12th
degree IP fitting result, c FIP degree 5 and base 3 fitting result

Table 1 The number of coefficients

Base (right) 3 5 7 9 11
Degree (down)

2 10 14 18 22 26

3 25 44 67 94 125

4 49 99 165 247 345

5 82 179 312 481 686

6 124 284 508 796 1148

7 175 414 753 1192 1731

8 235 569 1047 1669 2435

9 304 749 1390 2227 3260

10 382 954 1782 2866 4206

11 469 1184 2223 3586 5273

The values 3, 5, 7, 9, and 11 in the first row are bases. The values 2
through 11 in the first column are degrees. The other values are the
numbers of coefficient corresponding to bases and degrees

The advantages of FIP representation over IP representa-
tion are threefold. Firstly, FIPs can accurately describe the
complicated objects. The lower degree FIP works as well as
the higher degree IP in representing the same objects. As an
example, 12th degree IP and the fifth-degree FIP are used to
fit the same bear shape (see Fig. 1a), but their fitting results,
shown in Fig. 1b, c, respectively, are nearly equivalent, which
shows that the FIP has powerful capability to describe com-
plex objects. In fact, the IP of degree less than 12 cannot
represent the bear shape efficiently [29]. On the other hand,
the number of coefficients of the 12th degree IP is 91. How-
ever, the one of fifth degree FIP is 82 (see Table 1). This
means that in contrast to IPs, FIPs can use fewer coefficients
to represent objects. Secondly, Due to the fractional exponent
of the degree, FIP representation has much lower computa-
tional complexity and higher numerical stability, which will
be further discussed in the Sect. 4. Thirdly, the stabilities of
FIP representations are less affected by various preprocess-
ing methods. FIP representations may be viewed as a fitting
process consisting of three stages.

1. Transforming coordinates of dataset points to be close to
a unit square.

2. Fitting an IP to these transformed dataset points.
3. Transforming the IP to an FIP.
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The first item above implies that the FIP representation itself
has the ability to scale the dataset points to be close to a unit
square. Consequently, various preprocessing methods have
less effect on the stabilities of FIP representations.

This paper is organized as follows. Below we discuss the
background. Particularly, we review the IP representation,
and focus on the Ridge Regression (RR) fitting algorithm.
In Sect. 3, we define the FIP and investigate the relation
among the number of coefficients, the base, and the degree
of FIPs. In Sect. 4, we explore the properties of the FIP,
including its high stability and powerful representation and
present the comparison of FIPs and IPs in representing com-
plex objects. We develop an algorithm for determination of a
moderate degree for an FIP to represent a given object. Sec-
tion 5 presents simulation results obtained from comparison
of FIPs and IPs in representing complex objects. In addition,
the experiment on the comparison of contribution of the base
and the degree to the fitted FIP is also performed. Section 6
summarizes and concludes the paper.

2 Background

In this section, we provide a brief overview of IP represen-
tation, including definition of IPs, IP fitting algorithms, and
preprocessing methods.

2.1 Mathematical Formulation

Implicit polynomial in variable two and three can be used
to represent 2D curves and 3D surfaces, respectively. In this
paper, we only focus on IP curve, because the general prop-
erties of IP curve can be also easily extended to those of IP
surface.

An IP curve is a planar curve, and it can be specified by
the zero set of a 2D IP of degree n given by

f (x, y) =
∑

i+ j≤n, 0≤i, j

ai j x
i y j

= a00 + a10x + a01y + a20x
2 + a11xy + a02y

2

+ . . .

+ an0x
n + a(n−1)1x

n−1y + · · · + a0n y
n = 0.

(1)

The homogeneous polynomial of degree r in the variables
x and y is a form as follows:

ar0x
r + a(r−1)1x

r−1y + · · · + a0r y
r

particularly, the homogeneous polynomial of degree n is
called leading form of IPs.

The IP f (x, y) can also be expressed through the form of
the coefficient vector as follows:

f (x, y) = XTA, (2)

where

AT = [
a00 a10 · · · an0 a(n−1)1 · · · a0n

]

and

XT = [
1 x y · · · xn xn−1y · · · yn .]

Denoting the number of coefficients of f (x, y) , as well
as the dimension of the coefficient vector A, by p, we have
p = (n+1)(n+2)/2. In addition, the set of all points (x, y)
at which the IP f (x, y) is zero is called the zero set of IP
f (x, y).

2.2 Fitting Methods

In general, IP representations are obtained through a fit-
ting process, which is to find a coefficient vector that leads
to an IP that best fits the dataset points under a criterion
to be specified. In the past decades, various methods have
been developed, such as 3Lmethod [5], gradient-onemethod
[23], Min-Max method [7], etc. Among them, the Min-
Max method is the most stable, which further improves the
gradient-one and other algorithms by constraining the gradi-
ent vector along the zero set of IPs to have a norm for each
point of the dataset. The ridge regression (RR) algorithm
is also presented in [23] which applies regularization to the
gradient-one algorithm to alleviate the problem of spurious
zero sets of the fitted IP. In this work, we choose RR as the
fitting algorithm to investigate the properties of FIPs. The
RR algorithm is reviewed as follows:

Let Zk be the p × 2 gradient monomial matrix, Nk and
Tk be the local normal unit vector and tangent unit vector at
(xk, yk), respectively, where k = 1, 2, . . . , N and N is the
number of points in the dataset. Then, the monomial matrix
can be given as

M0 = [
X (x1, y1) X (x2, y2) · · · X (xN , yN )

]
.

And the normal monomial matrix and the tangent monomial
matrix are given, respectively, as follows:

M1 = [
Z1N1 Z2N2 · · · ZN NN

]
,

M2 = [
Z1T1 Z2T2 · · · ZNTN

]
.

Let b = [ 0N×1 1N×1 0N×1 ]T and define a new overall
monomial matrix M = [ M0 M1 M2 ]T. Then we can formu-
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late the fitting criteria as

MA = b.

Byusing a linear least squares algorithm to solve the above
equation, we can obtain the coefficient vector of the fitted IP
curve:

A = (MTM)−1MTb. (3)

Generally, the matrix MTM is nearly singular [23]. In
order to overcome this problem, we usually add a term kD
to the matrix MTM , where k is a small positive value called
the RR parameter, and D is usually a diagonal matrix, e.g.,
unit matrix. Then, (3) can be modified as

A = (MTM + kD)−1MTb. (4)

In addition, the detail for how to build D to obtain the
fitting invariance refers to [23].

2.3 Preprocessing Methods

In order to obtain stable IP representations, we have to
preprocess dataset prior to IP fitting. In general, the pre-
processing data consists of two steps. Firstly, locate the
dataset center of mass at the origin of the coordinate sys-
tem. Specifically, for dataset points (xi , yi ), i = 1, 2, . . . , N
, we convert them to new coordinates (xi ′, yi ′) using the fol-
lowing formulae.

xi
′ = xi − 1

N

N∑

j=1

x j ,

yi
′ = yi − 1

N

N∑

j=1

y j .

And secondly, scale each point (x ′
i , y

′
i ) to be close to value 1

or−1. Specifically, choose a good scale factor S and transfer
(x ′

i , y
′
i ) to (x̄i , ȳi ) by using the following function.

x̄i = x ′
i/S,

ȳi = y′
i/S.

In recent years, various scale factors have been devel-
oped, such as Sav, Smax, and S75%. Sav and Smax are obtained
by computing the average Euclidian distance and maximum
Euclidian distance of the data points from the origin, respec-
tively [23]. S75% is the 75th percentile of the distances of the
data points from the origin [3].

3 Definition of FIP

In this section, we define the FIP and investigate the relation
among the number of coefficients, bases, and degrees of FIPs.

3.1 Formulation

Fractional implicit polynomial (FIP), which is extended from
the IP, is an implicit function defined in a multivariate frac-
tional polynomial. The major difference from IPs is that the
degree of FIP is not an integer but a fraction. In this paper,
we focus on 2D FIP, which is defined as

fnm(x, y) =
∑

m≤i+ j≤nm
i, j=0 or i, j≥m

ai/m j/mx
i/m y j/m, (5)

where both n andm are integers greater than value 1. Further-
more, m is odd. We call fnm(x, y) FIP of degree n and base
m. Besides, the items of FIPs are called fractional monomi-
als. When m is known, we also call fnm(x, y) FIP of degree
n. Obviously, 3D FIP can be easily extended according to
(5).

Moreover, the FIP fnm(x, y) can also be rewritten in a
vector form as follows

fnm(x, y) = XTA, (6)

where

AT = [
a0/m 0/m am/m 0/m a0/m m/m a(m+1)/m 0/m

a0/m (m+1)/m · · · a2m/m 0/m am/m m/m

a0/m 2m/m · · · anm/m 0/m a(nm−m)/m m/m

a(nm−m−1)/m (m+1)/m · · ·
a(m+1)/m (nm−m−1)/m am/m (nm−m)/m

a0/m nm/m
]

and

XT =
[
1, xm/m, ym/m, x (m+1)/m, y(m+1)/m, . . . ,

x2m/m, xm/m ym/m, y2m/m, . . . , xnm/m,

x (nm−m)/m ym/m, x (nm−m−1)/m y(m+1)/m, . . . ,

x (m+1)/m y(nm−m−1)/m, xm/m y(nm−m)/m,

ynm/m]
.

As an example, wewrite the formula for fn3(x, y) accord-
ing to (5), which can also be written in the above vector form.
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fn3(x, y) = a0/3 0/3 + a3/3 0/3x
3/3 + a0/3 3/3y

3/3

+ a4/3 0/3x
4/3 + a0/3 4/3y

4/3

+ a5/3 0/3x
5/3 + a0/3 5/3y

5/3

+ a6/3 0/3x
6/3 + a3/3 3/3x

3/3y3/3

+ a0/3 6/3y
6/3 + · · ·

+ a3n/3 0/3x
3n/3 + a(3n−3)/3 3/3x

(3n−3)/3y3/3

+ · · ·
+ a3/3 (3n−3)/3x

3/3y(3n−3)/3 + a0/3 3n/3y
3n/3.

In order to further reveal the structure of each fractional
monomial of fn3(x, y) , we do not simplify their degrees. For
example, x3/3, y3/3, and x6/3 do not simplify to x , y, and x2,
respectively. Observing the above formula for the FIP, we
can find that FIPs have three features:

1. The degree of each variable in FIPs is an improper
fraction. Observing the FIP fn3(x, y), we can find that
its degrees of x and y in each fractional monomial
are greater than value 1. This implies that the first-
order partial derivatives of fn3(x, y) with respect to x
or y are polynomials rather than rational polynomials,
which ensures most of algorithms for IPs, such as fitting
algorithm, can be used for FIPs without any changes.
For example, for two given functions of two variables
f (x, y) = x4/3y and g(x, y) = x2/3y, their first-
order partial derivatives with respect to x should be
fx (x, y) = (4/3)x1/3y and gx (x, y) = (2/3)x−1/3y,
respectively. Clearly, gx (x, y) is a rational polynomial,
which implies that the variable x can not take value
zero. However, many fitting algorithms, such as Min-
Max method, require the first-order partial derivative of
every fractional monomial of FIPs is continuous on every
point in the coordinate plane. Consequently, the first-
order partial derivatives of fractional monomials of FIPs
must not be rational polynomials. That is, the degree of
each variable in FIPs is required to be an improper frac-
tion.

2. For FIPs and IPs of the same degrees, the number of
coefficients of the FIP is more than that of the IP, which
means FIPs can be provided with more information. For
example, an IP curve of degree 2 is a conic, but an
FIP curve of degree 2 is a more complex curve than a
conic.

3. The base of FIPs is an odd number. If the base of FIPs
were an even number, then we could not apply FIPs
in real domain. For example, supposed that there exists
an FIP fn4(x, y), the base of which is 4, then the two
variables x and y of the FIP only take positive real val-
ues or zeros, which limits FIPs to represent most of
objects.

Note that many fitting methods for IPs, such as 3L, RR,
and Min-Max, can also be directly used to fit FIPs without
any changes.

3.2 The Number of Coefficients

In order to obtain the general formula for the number of
coefficients of the FIP fnm(x, y), we first investigate the
coefficients of the FIP fn3(x, y) of degree n and base 3,
particularly, the regulatory variation of their indexes of coef-
ficients. Then, we can compute the number of coefficients of
the FIP fn3(x, y) as follows:

p3 = 2(3 − 1) + (1 + 2 + 3 + · · · + 3n − 3).

In the similar way, the number of coefficients of fn5(x, y)
and fn7(x, y) can also be given, respectively, by

p5 = 2(5 − 1) + (1 + 2 + 3 + · · · + 5n − 7)

and

p7 = 2(7 − 1) + (1 + 2 + 3 + · · · + 7n − 11).

Similarly, the general formula for the number of coeffi-
cients of the FIP fnm(x, y) , as well as the dimension of
vector A in (6) can be written as follows:

p = 2(m − 1) + (1 + 2 + 3 + · · · + m(n − 2) + 3)

or, equivalently

p = 1

2
m2(n − 2)2 + 7

2
mn − 5m + 4, (7)

wherem and n are base and degree of fnm(x, y), respectively.
Note that both n and m are integers greater than value 1.

Before representing a dataset using an FIP, both its degree
and its base must be determined. It is clear from (7) that
the number of coefficients depends on these two parameters.
Note that toomany coefficients will limit application of FIPs.
Consequently, it is of importance to choose amoderate degree
and base for an FIP so that it has both high representation
power and as few coefficients as possible.

Table 1 lists the number of coefficients p corresponding
to degrees n when bases m are 3, 5, 7, 9, and 11, respec-
tively. Clearly, for base 3, base 5, and base 7, the numbers of
their corresponding coefficients all tend to increase slowly
as degrees increase, but for base 9 and 11, the opposite is
true. This implies that we choose high degrees to improve
the representation power of FIPs only when bases are 3, 5,
or 7. On the other hand, when the degrees are 2, 3, or 4,
the numbers of coefficients do not increase rapidly as bases
increase. For example, the numbers of coefficients of second
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and third degree FIPs are only 26 and 125, respectively, when
both their bases are 11.

In general, if further improving FIP representations, we
can increase either bases or degrees of FIPs according to the
following principle: For low degrees, such as degree 2 and 3,
we may increase bases, but for high degrees, only base 3 and
5 are suggested to choose. In other words, high degrees and
high bases should not be simultaneously chosen for FIPs to
represent objects under the requirement of few coefficients.
However, regardless of the number of coefficients, we can
greatly improve representation power of FIPs by increasing
both its degree and its base.

4 Properties of FIP Representation

In this section,we investigate the properties of theFIP, includ-
ing its high stability and powerful representation and give
the comparison of FIPs and IPs in representing the objects.
In addition, we develop an algorithm for determination of a
moderate degree for an FIP to represent a given object, which
can be obtained by only computing the number of stationary
points on the objects. Lastly, the computational cost of FIPs
is analyzed.

4.1 The Stability of FIPs

As discussed in introduction, the stability of IPs mainly
depends on the degree of IPs and preprocessing method for
the same fitting algorithm. In general, the higher the degree
is, the more instable the IP representation becomes. Conse-
quently, in order to reduce instability of representation, one
should choose as low degree for an IP as possible. How-
ever, the lower degree IP cannot represent complex objects.
Therefore, we extend IPs to FIPs to overcome these prob-
lems.

The stability problemofFIP representationmeans the high
sensitivity of zero set to small changes in the values of the
FIP coefficients. In other words, if FIP representation is sta-
ble, then, small changes (errors) in its coefficients only result
in small changes in the location of its zero set points. Con-
versely, if FIP representation is unstable, then small changes
(errors) in its coefficients result in large changes in the loca-
tion of its zero set points. Specifically, for a given point
(xi , yi ) on zero set of f (x, y), its small change implies that
the point moves small distance in the direction that is per-
pendicular (normal) to the zero set. Denoting this distance
and the variation of coordinate of the point (xi , yi ) by �d
and (�x,�y), respectively, we have

�x = �d cos θi , �y = �d sin θi , (8)

where

cos θi = fx (xi , yi ) /

√
f 2x (xi , yi ) + f 2y (xi , yi ),

sin θi = fy(xi , yi ) /

√
f 2x (xi , yi ) + f 2y (xi , yi ),

and the vector (cos θi , sin θi ) is the gradient vector of the
function f (x, y) at the point (xi , yi ).

In order to analyze the stability of FIP representation, we
need to examine how small changes in the coefficient values
affect the location of a point on the zero set. Then, we have
the following theorem.

Theorem 1 Supposed that f (x, y) = 0 is an FIP curve of
degree n and base m which is accurately fitted to a given
shape, then the fitted FIP would become more stable as m
increases.

Proof According to (6), we can rewrite the coefficient vec-
tor AT in (6) as [a1 a2 a3 · · · ap−1 ap] , where ai is the
i th element from AT and p is the number of coefficients of
the FIP curve f (x, y) = 0 , as well as the dimension of AT.
Regarding x , y, and a as variables of f (x, y) and expand-
ing f (x, y, a) in the point (xi , yi , a j ) by a first-order Taylor
series approximation, it follows that

f (xi + �x, yi + �y, a j + �a)

= f (xi , yi , a j ) + fx (xi , yi , a j )�x

+ fy(xi , yi , a j )�y + fa(xi , yi , a j )�a.

Considering f (xi , yi , a j )=0, fa(xi , yi , a j )= xu/m
i yv/m

i ,

where xu/m
i yv/m

i is the fractional monomial corresponding
to the coefficient a j . Hence, we can obtain

fx (xi , yi , a j )�x + fy(xi , yi , a j )�y + xu/m
i yv/m

i �a = 0.

Substituting�x and�y in (8) into the preceding equation,
then we have

fx (xi , yi , a j )�d cos θi + fy(xi , yi , a j )�d sin θi

+ xu/m
i yv/m

i �a = 0.

Considering that (cos θi , sin θi ) is the gradient of the func-
tion f (x, y) at the point (xi , yi ), simplifying the above
equation, then we have

�d

�a
= −(xui y

v
i )1/m

√
f 2x (xi , yi ) + f 2y (xi , yi )

. (9)

Noting that m is less than u and v. Let u = d1m + r1 and
v = d2m + r2 , where r1 and r2 are remainders, d1 and d2
are quotients.
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It is clear from (5) that d1+d2 ≤ n, both r1 and r2 are less
than m. Then, we have xu/m

i yv/m
i = (xd1i yd2i )(xr1i yr2i )1/m ,

and hence, the fractional monomials xu/m
i yv/m

i would

approach xd1i yd2i as m goes to infinity.
On the other hand, since the FIP curve f (x, y) = 0

accurately fits the given shape, then, the gradient norm of
f (x, y) = 0 at each point (xi , yi ) on this curve, namely√
f 2x (xi , yi ) + f 2y (xi , yi ) , is a constant value. The reason is

that the given shape is fixed and the gradient norms of the
fitted FIP f (x, y) are constrained to have the same values
as the estimated gradient norms from this shape [23]. This

implies that the gradient norms
√

f 2x (x, y) + f 2y (x, y) are

independent of base m. That is, when m goes to infinity, we
have

�d

�a
= −xd1i yd2i√

f 2x (xi , yi ) + f 2y (xi , yi )
. (10)

Since both xi and yi have been preprocessed to be close to
values 1.0 or−1.0 before fitting FIP to a given shape, we can
see that xd1i yd2i is closer to values 1.0 or−1.0 than xu/m

i yv/m
i .

This means that the effect of a small coefficient perturbation
�a on the location of the points on zero set will decrease as
the base m increases. That is, an FIP would become more
stable as its base m increases. ��

From the above theorem, we also find that in contrast to IP
representation, the change in the coefficient values of FIPs
is less affected by the change in the location of points on
the zero set due to the presence of bases of FIPs. The main
reason is that FIPs can use less degree than IPs to represent
a given shape.

To gain further insight into the stability of an FIP of degree
n and base m, we give an example to demonstrate how the
coordinates of dataset points are transformed to be closer
to value 1 or −1 by computing their mth root in fitting FIP
process. Both Fig. 2a, b show bear shape (solid line) nor-
malized by scale factor Sav and the unit square (dotted line).
Obviously, the normalization only transforms the coordinates
of the points on the original bear shape to be close to the unit
square without changing original shape of the bear. However,
the transformed shape by computingmth root of coordinates
is just the opposite. As shown in Fig. 2a, b, the deformed
bear shapes with bold solid line are obtained by computing
third root and fifth root of coordinates of the bear shape,
respectively. Obviously, the latter with bold solid line shown
in Fig. 2b is more similar to unit square than the former
with bold solid line shown in Fig. 2a. In order to estimate
the similarity of the transformed bear shapes with mth root
(m = 1, 3, 5, 7, 9) against the unit squares, we compute the
distances between them. As illustrated in Fig. 2c, the dis-
tance decreases rapidly as the root m increases. Specifically,

Fig. 2 a Bear shape transformed with third root (bold solid line). b
Bear shape transformed with fifth root (bold solid line). Both a and b
share the same bear shapes (solid line) normalized with Sav and unit
square (dotted line). c The distances from unit square to the bear shape
transformed with first, third, fifth, seventh and ninth roots, respectively

the distances are 197.63, 84.71, 54.9, 40.71, and 32.36 when
the basesm are 1, 3, 5, 7, and 9, respectively. This implies that
as the base increases, the coordinates of transformed dataset
points aremore andmore close to value 1 or−1,whichmakes
the fitted FIP more and more stable.

4.2 The Representation Power of FIPs for Objects

It is necessary to review the properties of IPs in order to
explore the representation power of FIPs. The reason is that
an FIP is generalized from an IP. The following theorem
demonstrates the representation power of IPsmainly depends
on its degree.

Theorem 2 If C1 and C2 are zero sets of the IPs of degree
n1 and n2 that do not share a common component, they can
intersect in at most n1n2 points [1].

This is the famous Bezout theorem in algebraic geometry.
As an example, it is noted in [11] that a pentagon cannot be
represented by a fourth-degree IP curve. The reason is the
following: If the pentagon can be fitted by a fourth-degree
IP curve, then there always exists a conic that intersects
two sides of each angle of the pentagon. This implies the
conic intersects the fitted fourth-degree IP curve in 10 points.
However, according to Theorem 2, a conic has to intersect a
fourth-degree IP curve in at most 8 points. Consequently, a
pentagon cannot be represented by a fourth-degree IP curve,
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but can be done by at least a fifth-degree one. Thus, Theorem
2 illustrates the relation between degrees of the two IP curves
and the number of their intersection points. Similarly, for an
FIP curve, we have the following theorem.

Theorem 3 Supposed that C1 and C2 are, respectively, zero
sets of the FIPs of degree n1 and base m, degree n2 and base
m which do not share a common component, then the two
zero sets intersect in at most n1n2m2 points.

Proof Let C1 be the zero set of the FIP f (x, y) and C2 be
the zero set of the FIP g(x, y). We can write the formula for
f (x, y) according to (5) as follows

f (x, y) =
∑

m≤i+ j≤n1m
i, j=0 or i, j≥m

ai/m j/mx
i/m y j/m . (11)

Similarly, we can also obtain the formula for g(x, y)
according to (5)

g(x, y) =
∑

m≤i+ j≤n2m
i, j=0 or i, j≥m

bi/m j/mx
i/m y j/m . (12)

Defining s = x1/m and t = y1/m , substituting s and t
for x and y, respectively, then (11) and (12) are converted
to implicit polynomials, which are denoted by p(x, y) and
q(x, y), respectively.

p(x, y) =
∑

m≤i+ j≤n1m
i, j=0 or i, j≥m

ai/m j/ms
i t j ,

q(x, y) =
∑

m≤i+ j≤n2m
i, j=0 or i, j≥m

bi/m j/ms
i t j .

We can see that p(x, y) and q(x, y) are implicit polyno-
mials of degree n1m and n2m, respectively. According to
Theorem 2, their zero sets can intersect in at most n1n2m2

points. That is, the zero sets of f (x, y) and g(x, y) also inter-
sect in at most n1n2m2 points. ��

It is clear from the two above theorems that the number
of intersection points of the two FIP curves is square their
base times that of the two corresponding IP curves when their
degrees are the same.

4.3 The Determination of Degree of FIPs

As noted in [11], if IPs of arbitrary degree are allowed, then
every object can be described, but it is better to work with
degrees as low as possible. Clearly, the same goes for FIPs.
Thus, we need to choose a moderate degree for an FIP so
that it can represent a given object efficiently. The general

methods are to find a moderate degree by trying different
degrees several times and selecting the best one from the
results [29]. In this section, we present amethod to determine
the degree range only based on the shape of the given dataset.

In order to determine a moderate degree for an FIP, we
need to explore its properties. Obviously, some of these
properties can be extended from those of IPs, such as bound-
edness, connectivity, etc.

Boundedness implies that the zero set of FIPs is bounded,
and connectivity means the zero set of the FIP does not
include disconnected components or does not intersect itself.
In general, FIPs are used to represent closed and bounded
curves, rather than open curves. Therefore, the fitted FIP
curve is restricted to be bounded and connective.

As noted in [11,25], if zero set of an IP is bounded, then,
degree of the IP must be even. In other words, zero set of the
IP of odd degree must be unbounded. Besides, if the zero set
of an IP does not intersect itself, then the first derivatives of
the IP with respect to x and y both are not zeros simultane-
ously. Obviously, comparing (1) with (5), we can arrive at
the conclusion: the FIP also has these two properties.

For a given dataset, e.g., an object’s boundary, determina-
tion of the moderate degree of the fitted FIP can only depend
on the structure of the dataset, especially on the features of
the boundary, such as stationary points and corner points. An
stationary point is an input to a function where the derivative
is zero (equivalently, the slope is zero): where the function
stops increasing or decreasing. The following theorem shows
how to use the number of stationary points to determine the
degree range for an FIP.

Theorem 4 Supposed that the number of stationary points
in the boundary of a given object B is s, and the FIP of degree
n and base m fits B best. Then relation between n and s is
given by

n ≥
(
1 +

√
1 + 4s/m2

)
/2. (13)

Proof For the boundary of object B, we need to use a
bounded and connective FIP to represent it because B is
closed and connective. Let the fitted FIP curve be denoted by
f (x, y) = 0 and then we can obtain the slope of the tangent
line to the curve at each point according to the slope function
− fx (x, y)/ fy(x, y) . On the other hand, due to the connec-
tivity of the curve, fx (x, y) and fy(x, y) both are not zeros
simultaneously. Without loss of generality, let fy(x, y) �= 0 ,
we can obtain stationary points on the curve through solving
the following system of equations.

{
f (x, y) = 0

fx (x, y) = 0.
(14)

123

Author's personal copy



J Math Imaging Vis (2016) 55:89–104 97

It is clear from (5) that fx (x, y) is the FIP of degree n− 1
and base m. According to Theorem 3, there exist at most
n(n − 1)m2 solutions to (14). In other words, there exist at
mostn(n−1)m2 stationary points on the FIP curve f (x, y) =
0. Hence, we have the following inequality:

n(n − 1)m2 ≥ s.

Solving the above inequality, we have (13). ��
The above theoremprovides away to determine the degree

of an FIP in representing a given object. In general, the base
m takes the smaller value, such as 3 or 5. For example, n ≥
(1+ √

1 + 4s/9)/2 when m = 3. In order to force the fitted
FIP curve to be bounded, the degree is required to be even
number. Thus, the lower bound for the degree is the smallest
even number greater than (1 + √

1 + 4s/9)/2 . Moreover,
to further ensure that the fitted FIP is of even degree and
efficient to represent the given dataset, we can modify (13)
as follows:

n =
{
2 s < 7

even (2 + (1 + √
1 + 4s/m2)/2) s ≥ 7,

(15)

where even is a function and its returned value is the even
number nearest to 2 + (1 + √

1 + 4s/m2)/2.
It is clear from (15) that we can find if 7 ≤ s < 34, then

the expression 2 + (1 + √
1 + 4s/9)/2 ranges from 3.51 to

4.48. Hence, the lower bound for the degree should be 4. That
is, if the number of stationary points on the boundary of a
given object is less than 34, then we should choose an FIP of
degree greater than or equal to 4 to fit the object. Similarly, the
degree greater than or equal to 6 should be chosen for fitted
FIP when 34 ≤ s < 78 and degree 8 when 79 ≤ s < 141.

Before applying (15) to determine the moderate degree
for the fitted FIP, we need to obtain the number of stationary
points in the given dataset. Hence, estimation of the slope is
required from the scattered data, which is a basic problem
in curve and surface approximation. Generally, we can fit a
regression line to the points in the neighborhood of the given
point and regard the slope of the line as that of the dataset at
this point [7]. Afterward, we can obtain all stationary points
in the dataset by finding the points where the slopes take
value 0.

Note that if m = 1, then (13) can be modified as n ≥
(1+√

1 + 4s)/2.This inequality provides away to determine
degree for the IP curve.

In summary, the algorithm for determination of degree of
FIPs can be simply described as follows:

1. Fitting a regression line to the points in the neighborhood
of each point in the given dataset and calculating the slope
of this line.

Fig. 3 Detection of stationary points from the shape of a bear

2. Counting the number of the points where the slopes take
value 0. Then viewing it as the number of stationary
points.

3. According to (15), calculating the degree and choosing
it as the candidate degree of the fitted FIP.

We named the above algorithm shape-degree algorithm.
As an example, Fig. 3 shows the shape of a bear and its

stationary points obtained with above algorithm. It can be
seen that the number of the stationary points is 21. Accord-
ing to Theorem 4, if setting the value of base to be 3,
then the degree of the fitted FIP should be greater than or
equal to 4. Figure 1c shows the fitted zero set of the FIP
of degree 5, which is very accurate and stable for fitting
the bear shape. Note that the algorithm is insensitive to the
errors of the number of the detected stationary points. For
example, the lower bound of the degree is 6 if only the num-
ber of the detected stationary points belongs to the interval
[34,78).

Although the above algorithm only provides a lower
bound for degree for the fitted FIP curve, we can find a
moderate degree by starting to fit an FIP curve from this
lower bound rather than from degree 2. In most case, the
moderate degree for the fitted FIP curve usually is equal
to this lower bound, which is further illustrated in detail in
Sect. 5.

4.4 Computational Cost

The complexity of evaluating FIP representation mainly
depends on the total number of multiplications required to
evaluate all its fractional monomials. In order to clearly
show lower computational complexity of evaluating an
FIP, we only analyze the complexity of the FIP of
base 3.

Let q = x1/3, r = x2/3, s = y1/3, and t = y2/3. The
formula for fn3(x, y) can be rewritten as
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fn3(x, y) = a0/3 0/3 + a3/3 0/3x + a0/3 3/3y

+ a4/3 0/3xq + a0/3 4/3ys

+ a5/3 0/3xr + a0/3 5/3yt

+ a6/3 0/3x
2 + a3/3 3/3xy + a0/3 6/3y

2

+ · · · .

(16)

Observing each of the homogeneous fractional polynomi-
als of fn3(x, y), defining bi/3 to denote the total number of
multiplications required to evaluate the homogeneous frac-
tional polynomial of degree i/3, then we have

b3/3 = 0 + 0, b4/3 = 1 + 1, b5/3 = 1 + 1,

b6/3 = 1 + 1 + 1,

b7/3 = 2 + 2 + 2 + 2 = 2 × 4 + 0,

b8/3 = 2 + 2 + 3 + 2 + 2 = 2 × 5 + 1,

b9/3 = 2 + 2 + 3 + 3 + 2 + 2 = 2 × 6 + 1 × 2.

In the similar way, we can obtain the total number of mul-
tiplications required to evaluate the homogeneous fractional
polynomials of degree 10/3, 11/3, and 12/3, respectively, as
follows:

b10/3 = 3 × 7 + 0,

b11/3 = 3 × 8 + 2 × 1,

b12/3 = 3 × 9 + 2 × 2.

In general, for degree (3i − 2)/3, (3i − 1)/3, (3i − 0)/3,
we have

b(3i−2)/3 = (i − 1) × (3i − 5),

b(3i−1)/3 = (i − 1) × (3i − 4) + (i − 2),

b(3i−0)/3 = (i − 1) × (3i − 3) + (i − 2) × 2.

Defining ci to denote the sum of the above three terms,
namely, ci = b(3i−2)/3 + b(3i−1)/3 + b(3i−0)/3, then we have

ci = (i − 1) × (9i − 12) + 3(i − 2)

or, equivalently,

ci = 9i2 − 18i + 6.

Sum all ci , i = 3, 4, . . . , n to obtain

n∑

i=3

ci = 3n3 − 9n2/2 − 3n/2 − 3.

Adding b3/3 + b4/3 + b5/3 + b6/3 (equal to 7) to above
formula, we can obtain the formula for the total number of
multiplications required to evaluate (16) as follows:

3n3 − 9n2/2 − 3n/2 + 4, (17)

Fig. 4 A comparison between FIPs and IPs with respect to the number
of multiplications

where n ≥ 2.
In addition, evaluation of x1/3 can be implemented by

expanding it at x = 1 or x = −1 by a third-order Taylor
series approximation because the dataset points (x, y) have
been scaled to be close to value 1 or −1. Accordingly, the
evaluation of x1/3 requires 3multiplications. In the sameway,
evaluation of y1/3 requires 3multiplications aswell, and both
x2/3 and y2/3 require 4, respectively. Then, the evaluations
of q, r , s, and t in (16) require 14 multiplications in all.

Adding 14 to (17), it follows that the formula for the total
number of multiplications (denoted by SFIP) required to eval-
uate FIP fn3(x, y) is

SFIP = 3n3 − 9n2/2 − 3n/2 + 18.

On the other hand, for complexity of evaluating an IP
fn(x, y), it is easy to obtain the required total number of
multiplications (denoted by SIP):

SIP = n3/3 − n2/2 − 5n/6.

As described in Sect. 4.2, an FIP of degree n and base 3
shares approximately the same power as an IP of degree 3n
in representing a given object. In order to show the lower
computational cost of the FIP, we make a comparison of
evaluation complexity between the FIP and the IP in the case
of the same representation power. Figure 4 illustrates this
comparison result.

It is clear from the comparison result that the FIP fitting
needs much lower computational cost than the IP in the case
of the same representation power. For example, evaluation of
the IP of degree 18 requires more than 2000 multiplications.
However, the corresponding FIP only requires around 400
multiplications.

5 Experimental Results

In this section, we illustrate the effectiveness of FIP repre-
sentation through competing it with IP representation under
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Fig. 5 Objects used in the experiments

the same fitting algorithm. To make comparative evaluation
possible, we set our experiments in some precondition.

1. All of datasets of objects are normalized by Sav methods,
namely, centering the dataset center of mass at the origin
of the coordinate system and scaling it by dividing each
point by the average length from point to origin.

2. The RR algorithm is used as fitting method and fitting
results are evaluated using the fitting error (FE) computed
for every single point [17]. In the following experiments,
we use accumulated FE(AFE) where AFE = ∑N

i=1 FEi

as a quantitative criterion for comparison.
3. The bases of FIPs used in the experiments take value 3

unless otherwise specified.

5.1 Comparison of Fitting Stability

In order to access the fitting stability of the FIP representa-
tion, we conducted the experimental evaluation on various
objects (Fig. 5) including real-world objects and artificial
free-form shapes ranging from simple to complex. Particu-
larly, the powerful representation of FIPs can be shown by
accurately representing the complex objects, such as hands,
rats, and cats. Note that in the following experiments, we
choose RR algorithm to fit FIPs and IPs.

These objects shown in Fig. 5 were obtained from the
Laboratory for Engineering Man/Machine System (LEMS),
Brown University. Before representing these objects using

FIPs, we used the shape-degree algorithm to determine the
candidate degree for each of them. The degrees obtained by
using the algorithm are shown in the second column in Table
2.

We fitted the FIPs with these candidate degrees to the
objects, and found that only degree 4 failed to work well
for bears and hands; degree 6 failed to do for rats. For exam-
ple, use of the degree 4 to fit the bear would lead to undesired
inaccuracy as showed in Fig. 11a. Accordingly, we increased
the degrees to 6 and 8 shown in the parentheses in Table 2,
respectively. Note that the 5th degree FIP can represent the
bears, hands, and planes well, but to ensure the FIP to be of
even degree, the degree 6 is chosen. The Fitting results are
shown in Fig. 6. It is clear that most of the degrees are mod-
erate ones for FIPs to fit these objects, which indicates the
shape-degree algorithm is efficient, and its most advantage
is that the degrees of FIPs can be determined only based on
the shapes of the given objects before fitting.

Figure 6 shows the fitted FIP curves for all objects in Figs.
5, and 7 shows the fitted IP curves with the corresponding
degrees. Their AFEs are shown in the third column and the
fifth column inTable 2, respectively. It is clear from the fitting
results and corresponding AFEs that for all the shapes, the
FIP representation performs consistently better than IP rep-
resentation, both visually and in terms of the error measures
used. Especially for the complex shapes, the FIP exhibits
higher representation power. For example, although bears,
cats, and hands are all complex shapes, only sixth-degree
FIP can accurately represent them. The AFEs for the three
shapes were only 0.0616, 0.4527, and 0.1745, respectively.
Furthermore, few extraneous components appear in the zero
set of the three fitted FIPs, which illustrates the high stability
of FIPs. However, as shown in Fig. 7, the same degree IPs
failed to represent these three shapes. The works in [28] and
[5] note that the bears require at least 12th degree IP for fit-
ting and hands require 18th degree one. In fact, high-degree
IP will lead to not only high computational cost but also high
numerical instability. That is, high-degree IP is not suitable
to represent complex objects.

Because FIP of degree n and base 3 shares the approx-
imately same power as IP of degree 3n in representing a
given object in theory, for the sake of fair comparison, we
chose IPs with their degrees three times the ones of the fitted
FIPs shown in Fig. 6 to represent the corresponding shapes.
That is, we fitted the IPs of degree 18 to bears, cats, dinos,
hands, planes, and rats, and degree 12 to other shapes. The fit-
ting results are shown in Fig. 8 and the corresponding AFEs
are shown in the fourth column in Table 2. Observing the
AFEs in the fourth column, although theAFEs obtained from
the fitting IPs to cars, cats, pliers, and teddies are smaller
than those from the corresponding FIPs, however, from the
resulting zero sets of these IPs, we can see that IPs unstably
represented bears, cats, dudes, planes, pliers, teddies, and
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Table 2 Comparison of fitting
error for FIP and IP
representations of the same
degree

Shape name Degree AFE for IP AFE for IP (3*degree) AFE for FIP

Bear 4(6) 2.2629 0.1108 0.0616

Boot 4 1.2917 0.0406 0.1513

Car 4 6.2977 0.0294 0.1078

Cat 6 13.5692 0.3179 0.4527

Dino 6 27.6609 4.2048 1.3908

Dude 4 13.9523 0.0833 0.0735

Fish 4 3.9886 0.2189 0.9172

Guitar 4 22.4822 0.1555 0.4526

Hand 4(6) 78.5990 5.4993 0.1745

Pigeon 4 0.7907 0.1221 0.0628

Plane 6 10.7351 11.2386 0.4176

Pliers 4 65.4549 0.0942 0.3315

Rat 6(8) 22.0368 6.3061 2.9503

Teddy 4 17.5258 0.1616 1.2277

Tree 6 12.9109 2.6381 0.5348

The degree of the fitted FIP for each shape is obtained from (15), except the numbers in the parentheses
which are actual degrees of fitted FIPs. IP and FIP are fitted to each shape by the same RR method. Their
corresponding degrees and AFEs are shown in second, third, fourth, and last column, respectively

Fig. 6 Using RR fitting algorithm, the results of fitting FIPs to shapes
shown in Fig. 5 and their degrees corresponding to the shapes are shown
in Table 2

trees, particularly, failed to represent dinos, hands, and rats,
and only accurately represented the simple objects, such as
boots, cars, fishes, and guitars. Comparing the fitting results
in Fig. 7 and in Fig. 8, it appears that the use of higher degree
IPs has improved the accuracy of representation, but leads

Fig. 7 Using RR fitting algorithm, the results of fitting IPs to shapes
shown in Fig. 5, and their degrees corresponding to the shapes are shown
in Table 2

to much more instability, even failure in representing com-
plex shapes. On the other hand, comparing the fitting results
in Fig. 6 and in Fig. 8, we can see that both accuracy and
stability of FIP representation are significantly better than
the ones of IP representation especially for complex shapes.
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Fig. 8 Using RR fitting algorithm, the fitting results of IPs with their
degrees three times the ones of the corresponding fitted FIPs in Fig. 6

For example, among the objects in Fig. 5, the shape of rat
is the most complex, but only eighth-degree FIP shown in
Fig. 6 can accurately represent it (the AFE of this fitted FIP
is 2.9503). Although there exist extraneous components in
the zero set of the FIP, these extraneous components do not
intersect the shape of rat. Moreover, we can remove it by fur-
ther improve fitting algorithm. On the other hand, the fitting
results of FIPs shown in Fig. 6 and IPs shown in Fig. 8 are
in good accordance with the stability analysis from Theo-
rem 1. That is, these fitting results provide an experimental
validation of the theorem.

Implicit B-splines (IBSs) [18] can also accurately andflex-
ibly describe objects with complex topologies. However, in
the case of the same accuracy of representation, IBSs require
to use much more parameters (e.g., coefficients) than FIPs.
Figure 9 illustrates five datasets and we fitted IBSs and FIPs
to them, respectively. The resulting zero sets of IBSs andFIPs
are shown in the second row and third row. The correspond-
ing coefficient sizes and AFEs are provided in Table 3. From
Fig. 9, we can see that the resulting zero sets of FIPs and IBSs
are approximately equivalent, but the IBSs need much more
parameters than FIPs (see Table 3). For example, for hands,
IBSs methods (AFE=0.4) and FIPs methods (AFE=0.1162)
have approximately the samefitting accuracy.However, IBSs
need 865 coefficients and FIPs only need 124 coefficients.
Clearly, the use of the fewer coefficients is the key problem
in computer vision application.

Fig. 9 Comparison FIP representations with IBS representations.
Orignial 2D datasets (first row). Resulting zero sets of IBS (second
row) and FIP (third row)

Table 3 Comparison of performance for FIPs and IBSs

IBS FIP

Shape name Size AFE Size AFE

Oni 190 0.2788 124 0.0777

Dude 305 0.6183 124 0.0687

Fish 178 0.7475 124 0.0849

Homer 303 0.2546 124 0.3001

Hand 865 0.4000 124 0.1162

It is noted that in this work, we only focus on the prop-
erties of FIP representation rather than the fitting algorithm.
Therefore, for easy comparison, we only use the same RR
fitting algorithm to perform all tests. In fact, the fitted FIP
shown in Fig. 6 can be further improved by choosing the
better fitting algorithm.

In order to illustrate empirically computational cost of
FIPs and IPs, we performed an experiment to compare the
CPU costs of fitting FIPs and IPs to the fifteen shapes. The
experiment was run on an Intel quad CPU 2.33 GHz proces-
sor, with 4GB bytes of mainmemory. The CPU cost of fitting
FIPs and fitting IPs are shown in Fig. 10 and the resulting zero
sets of FIPs and IPs are shown in Figs. 6 and 8, respectively.
From Fig. 10, we can see the CPU cost of the FIP fitting
is consistently lower than that of IP fitting, which is highly
consistent with the conclusion drawn in Sect. 4.4 that the FIP
fitting needs much lower computational cost than the IP in
the case of approximately the same representation power.

5.2 Comparison of Contribution of the Base and the
Degree to the Fitted FIP

The shapes of bears used for comparing of the contribution
of the base and the degree to the fitted FIPs are shown in
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Fig. 10 The comparison of CPU costs of fitting FIPs and IPs

Fig. 11 Comparison of contribution of the base and the degree to FIPs.
a Fitting result of FIPs of degree 4, 5, 6 with the same base 3, respec-
tively; b Fitting result of FIPs of degree 4, 5, 6 with the same base 5,
respectively

Fig. 11. Figure 11a shows the results of fitting the fourth-,
fifth-, and sixth-degree FIPs of the same bases with its value
3 to bears, respectively, and the AFEs of the three fitted FIPs
are shown with solid lines in Fig. 12, while Fig. 11b shows
corresponding fitting results in the case of the same bases
with their value 5 and their AFEs are shown with dashed
line in Fig. 12. It is clear from the two figures that the FIP
of the degree 4 and base 3 cannot represent the shapes of
bears, but the FIP of degree 4 and base 5 can do this. In
addition, the resulting zero set of the FIP of the degree 6 and
base 3 is similar to that of the FIP of the degree 4 and base 5.
Hence, the fitting result can be improved by increasing either
the degree or the base of the FIP. However, under the same
condition, we prefer the latter. The reason is that the greater
the bases are, the more stable the fitted FIPs become as noted
in Sect. 4.1. We give an example to further illustrate this in
the following experiments.

By adding uniformly distributed random noise to the coef-
ficients of the FIP to simulate the small coefficient changes,
we can find the effect of the different bases on the stability of
FIPs. The bear shown in Fig. 5 was used to test in this experi-
ment. The random noise, having a uniform distribution in the
range [−0.01, 0.01], was generated. The same noise vector

Fig. 12 AFE of the fitted FIP of base 3 and 5, respectively

Table 4 Comparison of error statistic for FIPs of difference base and
IPs of the corresponding degree

The type of curves Mean Variance

FIP of Base 3 0.2211 0.7480

FIP of Base 5 0.0155 0.0011

IP of degree 18 0.0476 0.0416

The results shown are a uniform random noise added to the coefficients
of the two fitted FIPs and one fitted IP. The statistics is based on 200
independent error vectors

Fig. 13 Sensitivity for FIPs of different bases. a the fitted FIP (solid
line) of degree 6 and base 3 with three noise vectors added to its coeffi-
cients, respectively, b the fitted FIP (solid line) of degree 4 and base 5
with the three noise vectors added to its coefficients, respectively, c the
fitted IP (solid line) of degree 18 with the three noise vectors added to
its coefficients, respectively

was added to the coefficients of the fitted FIP and the fitted
IP for the bear. Figure 13a shows that the results obtained by
adding three independent noise vectors to the same fitted FIP
of degree 6 and base 3 for the bear; (b) shows the correspond-
ing results from the FIP of degree 4 and base 5; and (c) shows
the corresponding results from the fitted IP of the degree 18.
It is clear from the Fig. 13a that the FIP of base 3 appears to
be very instable. This means that the smaller changes in the
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coefficient of the fitted FIP of base 3 (solid line in Fig. 13a)
lead to the failure in representing the bear (dotted line). We
also find from Fig. 13c that the three IP curves are instable,
especially for the third fitted IP curve (solid line), which was
changed into an open curve. However, after the same noise
vectors were added to the coefficients of the fitted FIP of
base 5, we can find from Fig. 13b that the fitted FIPs were
less affected by the added noise vectors. These implied that
the FIP of the higher base were more stable. In order to fur-
ther illustrate this, by adding 200 independent random noise
vectors to the coefficients of the fitted FIP of base 3, base
5, and the fitted IP of degree 18 for the bear, respectively,
we obtained 200 AFEs for the FIPs of base 3 and base 5
and 200 AFEs for the IP of degree 18, respectively, whose
statistics including mean and variance are shown in Table
4. Obviously, the mean and variance for FIP of base 5 were
0.0155 and 0.0011, respectively, which were far smaller than
0.2211, 0.7480 for the FIP of base 3 and 0.0476, 0.0416 for
the IP of degree 18. This also indicates that the higher base
FIP is more stable than the lower base one in representing
complex objects.

6 Conclusion

In this paper, we present the concept of the FIP and intro-
duce it to represent complex objects. Based on analysis of
properties of IPs, we give the general formula for FIPs and
extend the connectivity and boundedness of IPs to those of
FIPs. Furthermore, we investigate the properties of the base
of FIPs and find that FIPs have higher stability and power-
ful representation than IPs due to the presence of the base.
In addition, we develop an algorithm for determination of a
moderate degree for an FIP to represent a given object, which
can be obtained by only computing the number of stationary
points on the object.

In simulations, we compare FIPs with IPs in fitting 15 dif-
ferent object shapes. We demonstrate that the advantage of
the FIP representation over IP representation is more signif-
icant when the shapes are much more complex. In this case,
IPs usually fail to represent the complex shapes, but FIPs
can accurately represent themwith lower computational cost
and higher stability. Furthermore, the higher base FIP ismore
stable than the lower base one.

It is noted that FIPs, extended from IPs, contain many
good characteristics of IPs, such as fast fitting, interpretable
coefficients, and robustness against noise and occlusion. Par-
ticularly, the geometry variants of FIPs can be obtained easily
by evaluating the local minimum values of the FIP func-
tion because these local minimum values and their ratios are
invariant under the similarity transform and affine transform,
respectively.

Future work should study the algebraic or geometry vari-
ants based on FIPs and extend FIP curves to FIP surfaces.
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