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a b s t r a c t

Effective and efficient representation of open curves is a challenging problem in statistical shape analysis.

In this paper, we propose a novel shape descriptor, called Chebyshev polynomial descriptor (CPD) for rep-

resenting open curves. Firstly, a general formula for the computation of CPDs and parametric equations of

reconstructed curves are given; secondly, we investigate properties of CPDs, including its stability, similarity-

invariant and invariance under different starting points. Finally, the reconstructed curve from CPDs is used to

compute the curvature of an original open curve. Experimental results demonstrate the effectiveness of both

representation of handwriting and computation of curvatures.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

The edge information extracted from real-world image is a plane

ontour shape, which is usually represented as a closed curve or an

pen curve. During the past decades, many methods were proposed

o represent closed curves, such as Fourier descriptors [15], curvature

cale space [7], implicit polynomial curves [11] and so on. However,

he representation of open curves has received much less attention

han that of closed curves. Actually, many shapes extracted from

mages are open, including the strokes of digital signatures [8], the

hapes of plant organs containing worm-eaten defects [12], the

dges of hand postures and the edges of face profiles. In addition, we

ometimes need to focus on a certain part of an object outline and

he part may be also regarded as an open curve, for example curve

atching for open curves [3] and so on. Consequently, the use of

fficient methods to represent open curves is important task when

nalyzing objects in images. Although most of methods for repre-

enting closed curves can be applied to open curves, these methods

o not always work well because they usually suffer from a failure

o process the points near endpoints of open curves. For instance,

n elliptic Fourier descriptor [4], the reconstructed curve tends to

ecome a closed curve and to vibrate near the endpoints. In order to

fficiently represent open curves, the P-type Fourier descriptor [13]

as proposed and has been successfully applied to recognition of

hape of human face profiles [1], statistical shape analysis of rice leaf

17] and tracing open curves [14]. However, this method is sensitive
✩ This paper has been recommended for acceptance by A. Koleshnikov.
∗ Corresponding author. Tel.: +86 13770590389.

E-mail address: wugang69@gmail.com (G. Wu).
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o noise and hence fails to analyze the subtle and fine structure

f a shape. In contrast to P-type Fourier descriptor, the protrusion

ourier descriptor [12] is more robust against noise, but this method

uffers from high computational cost and difficulty to reconstruct

he original shape from its descriptors. The above methods belong

o the type of statistical analysis. Another type of methods are of ap-

roximate representations. Implicit polynomial representations and

-spline representations fall into this category. Implicit polynomial

epresentations are unstable and only suitable for simple shapes [16].

-spline representations need to determine the control points before

epresenting shapes. These disadvantages limit their application in

hape representation. In addition, based on Chebyshev polynomials

heory, the Chebyshev moment descriptors were proposed in [9] to

epresent shapes of objects. However, the descriptors belong to a

ind of region-based descriptors. Generally, they are not appropriate

or describing curves, especially open curves. Chebyshev moment

escriptors can be applied to a closed curve by changing the curve

nto a binary image, for example setting to 1 the pixels located inside

he closed curve and to 0 the pixels located outside. Unlike close

urves, there are no interior and exterior for open curves, and hence,

e cannot use region-based shape descriptors, such as Chebyshev

oment descriptors, to represent open curves.

As a matter of fact, to represent open curves, a key problem is how

o handle their extremities, but most of existing algorithms cannot

ork well at those points nearby endpoints [18]. In general, an origi-

al open curve needs to be padded with some data, such as padding

he curve with zero data, replicated data, symmetric data and so on.

n addition, in [2], the open curves are padded through minimizing

he spectral energy. However, these methods need much more com-

utational cost and suffer from lack of theoretical basis.

http://dx.doi.org/10.1016/j.patrec.2015.05.004
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In this work, we propose a novel Chebyshev polynomial descriptor

(CPD) to represent open curves. In contrast to the existing methods,

the CPDs have the following advantages.

1. Powerful ability to represent open curves. Like Fourier descriptor,

the first few low order CPDs can capture the overall shape while

the high order ones capture its finer details. Besides, CPDs are

easy to normalize (rotation, scale and translation) and preserve

the overall shape information. The CPDs represent not only the

closed curves but also open curves, especially the self-overlapping

curves.

2. Accurate, stable and fast representing. The use of Chebyshev

polynomial to represent digital open curves is actually Chebyshev

interpolation at Chebyshev polynomial zeros. This means the

reconstructed curve can completely pass through all points on

the digital open curves. Hence, CPDs can accurately and stably

represent open curves. On the other hand, due to the orthogonal-

ity of Chebyshev polynomials, the mathematical formulation for

the computation of CPDs is very simple and accordingly, CPDs can

be obtained with low computational cost.

3. Easy to be applied. The formula for CPDs is a real valued func-

tion and the equations of the reconstructed curve are expressed

by a finite sum of Chebyshev polynomials. Then, many theorems

and methods for Chebyshev polynomial can be used to analyze

the represented open curves. For instance, we can compute the

derivatives and curvatures of an original open curve through ana-

lyzing its reconstructed curve from CPDs.

This paper is organized as follows. We discuss the background in

the next section. Specifically, we review the mathematical formula-

tion for Chebyshev polynomials, and focus on how to use Chebyshev

polynomial to represent one dimensional data sets. In Section 3, we

define the Chebyshev polynomial descriptor and investigate how to

reconstruct the original curve from its CPDs. Furthermore, we explore

the properties of the CPDs, including the stability of CPDs and the

similarity-invariant based on CPDs. In addition, CPDs independent

on starting points are also discussed. Section 4 gives an algorithm

for computation of the derivative and curvature of shapes based on

CPDs. Section 5 presents simulation results obtained in representing

handwriting and recognition of shapes. In addition, the estimation

of curvatures of curves is also performed. Section 6 summarizes and

concludes the paper.

2. Background: representation of one dimensional data sets with

Chebyshev polynomials

In this section, we provide a brief overview of Chebyshev polyno-

mials and their key properties, including definition and orthogonality

of Chebyshev polynomials, especially focusing on how to fit a cheby-

shev polynomial to one given dimensional data set.

2.1. Mathematical formulation for Chebyshev polynomials

There are several kinds of Chebyshev polynomials [6]. However, in

this paper, we only discuss Chebyshev polynomials of the first kind.

Actually, Chebyshev polynomial of the first kind is one of the most im-

portant Chebyshev polynomials. In the following sections, we refer to

the Chebyshev polynomial of the first kind as Chebyshev polynomial.

A Chebyshev polynomial Pm(t) is a polynomial in t of degree m,

defined as

Pm(t) = cos(m arccos(t)) (1)

Clearly, the range of variable t is the interval [−1, 1]. That

is, Chebyshev polynomials are polynomials defined on the in-

terval [−1, 1]. Let t = cos(θ ), and then we can obtain Pm(t) =
cos(mθ ). According to trigonometric identity cos mθ + cos(m − 2)
= 2 cos θ cos(m − 1)θ, the definition of Chebyshev polynomial (1)

an be rewritten with recurrence relation as follows

P0(t) = 1, P1(t) = t

m(t) = 2tPm−1(t) − Pm−2(t), m = 2, 3, . . . (2)

Chebyshev polynomials exhibit many good properties. For exam-

le, Chebyshev polynomials can overcome Runge’s phenomenon. If

e use polynomial interpolation with polynomials of high degree

ver a set of equispaced interpolation points, then a problem of os-

illation at the edges of an interval will appear. This is known as

unge’s phenomenon. However, the roots of the Chebyshev poly-

omials are used as nodes in polynomial interpolation and the re-

ulting interpolation polynomial minimizes the problem of Runge’s

henomenon. Furthermore, the interpolation polynomial is of best

pproximation to a continuous function under the maximum norm.

hese good properties motivate us to use Chebyshev polynomials to

epresent open curves.

.2. Chebyshev polynomials approximation

The orthogonality is a key property of Chebyshev polynomials.

pecifically, the Chebyshev polynomials P0(t), P1(t), . . . , Pm(t) form

n orthogonal system on the interval [−1, 1] with respect to the

eight (1 − t2)− 1
2 . That is, the system of Chebyshev polynomials sat-

isfies the following identity [6]

1

−1

Pi(t)Pj(t)√
1 − t2

dt =

⎧⎪⎨
⎪⎩

0 , i �= j
π

2
, i = j �= 0

π , i = j = 0

(3)

here (1 − t2)− 1
2 is a function of t on the interval [−1, 1], called the

hebyshev weight function and denoted by w(t).

Due to the orthogonality of the Chebyshev polynomials, a given

unction f(t) can be expanded in a series based on the system of

hebyshev polynomials. That is

f (t) =
∞∑

i=0

ciPi(t) (4)

It is clear from the above series expansion that the function f(t)

an be approximated by the first m items in the series. That is, the

iven function f(t) may be approximated as

f (t) ≈
m∑

i=0

ciPi(t) (5)

Particularly, if the function f(t) is a polynomial of degree less than

r equal to m, then the first m items in the Chebyshev series expan-

ion in (4) will exactly approximate the function f(t) . Clearly, Cheby-

hev polynomials approximation of the function f(t) depends on how

o compute the coefficients ci in (5). According to [6], the coefficients

ci are given by the explicit formula

i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

m

m∑
j=1

f (t j)Pi(t j) = 1

m

m∑
j=1

f (t j), i = 0

2

m

m∑
j=1

f (t j)Pi(t j), 1 ≤ i ≤ m

(6)

here t j = cos ( j−0.5)π
m . Obviously, the values of Pm(t j), j =

1, 2, . . . , m are zeros. Hence we call t j, j = 1, 2, . . . , m the Cheby-

shev ploynomial zeros [6]. It follows from above formulae that the

Chebyshev polynomials Pi(t), i = 1, 2, . . . , m are orthogonal over the

hebyshev polynomial zeros.

For one dimensional data sets, e.g., y j, j = 1, 2, . . . , m, we

may construct a continuous function f(t) so that f (t j) = y j, ( j =
1, 2, . . . , m). In this case, the Chebyshev polynomials can be used
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Fig. 1. An example of the locus of 10 lines. (a) Contour of the hand. (b) The lines corresponding to the first 10 items of CPDs for hands.
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o approximate the function f(t) according to (5), where the coeffi-

ients are computed by (6). Actually, this approximation method is

n interpolation one. That is, we can use the Chebyshev polynomials

(t) = c0P0(t) + c1P1(1) + · · · + cmPm(t) to perform interpolation at

he Chebyshev polynomial zeros t j, ( j = 1, 2, . . . , m). As noted in [6],

he Chebyshev approximation is a minimax approximation and far

ore efficient and stable than other approximation methods. Indeed,

hebyshev approximation has been successfully applied to represen-

ation of time series [10].

. Chebyshev polynomial descriptors of open curves

In this section, we propose a new Chebyshev polynomial descrip-

or (CPD) to represent a given open curve based on the Chebyshev

olynomial approximation discussed in Section 2.2. Then we further

iscuss how to reconstruct a represented curve from its CPDs.

.1. The definition of CPDs

An open plane curve C can be expressed by parametric equation

(t) = (x(t), y(t)), t ∈ [0, L], where x(t) and y(t) are the functions of

he length t of the curve from an end point on C, and L denotes the

otal length of the open curve C. Clearly, each value of t determines

point (x(t), y(t)). Then the point (x(t), y(t)) varies and traces out a

urve C in a coordinate plane as t varies. In addition, the parameter t

oes not necessarily mean the length of the curve from end point on

, but rather the parameter of time.

In the discrete case, A digitized curve having N points can be ex-

ressed by a data set C = {Zi|(xi, yi), i = 1, 2, . . . , N}. Then, both {xi}

nd {yi} may be regarded as one dimensional data set respectively.

ence, we can respectively apply Chebyshev approximation to these

wo data sets and obtain their coefficients of Chebyshev approxima-

ion according to (6). Specifically, let {ai} denote the coefficients of

hebyshev approximation applied to the data set {xi}, and {bi} denote

he coefficients corresponding to {yi}. Then ,we have

a0 = 1

N

N∑
j=1

x j, ai = 2

N

N∑
j=1

x jPi(t j), i = 1, 2, . . . , N

b0 = 1

N

N∑
j=1

yj, bi = 2

N

N∑
j=1

yjPi(t j), i = 1, 2, . . . , N

(7)

The coefficients of Chebyshev approximation, ai and bi, i =
, 1, 2, . . . , N, are named as Chebyshev polynomial descriptors
CPDs). In addition, coefficients ai and bi are usually noted CPDi, i =
, 1, 2, . . . , N. The value N represents the order of CPDs. Like Fourier

escriptors, the CPDs represent the curve in spectral domain and con-

rol the amount of each frequency that contributes to make up the

urve. As a result, CPDs do not have the same values for different

urves, which enable CPDs to describe the curves.

.2. The reconstruction of curves from CPDs

After obtaining the CPDs (ai, bi, i = 0, 1, . . . , N) of a certain curve,

ccording to (5), we can easily reconstruct the curve and then formu-

ate it in the form of parametric equations:

xl(t) =
l∑

i=0

aiPi(t)

yl(t) =
l∑

i=0

biPi(t)

(8)

here 0 ≤ l ≤ N

Each term in the above equation has a geometric interpretation

s a line. That is, for a fixed value of i, the corresponding parametric

quation x = aiPi(t), y = biPi(t) defines the locus of a line segment in

he coordinate plane. Clearly, from the parametric equation, we have

/x = bi/ai. This means the equation of the line with value i is y =
(bi/ai)x. On the other hand, from (1), we have −1 ≤ Pi(t) ≤ 1. Hence,

he length of the line segment defined by x = aiPi(t), y = biPi(t) is

4a2
i

+ 4b2
i

Fig. 1 (b) illustrates the 10 line segments corresponding to the first

0 items of CPDs obtained by representing a hand shape shown in

ig. 1(a). In this interpretation, the values of a0 and b0 define the lo-

ation of the hand, which is shown by the dot in Fig. 1(a) and the two

ongest line segments in Fig. 1(b) are given by the two parametric

quations x = a1P1(t), y = b1P1(t) and x = a2P2(t), y = b2P2(t) re-

pectively. Also, we can see that the line segment becomes shorter as

he index of each item i in (8) increases. This implies the first several

tems of CPDs contain a large amount of information on the features

f a represented curve. Figs. 1(a) and 2 illustrate this idea. When l = 1

n (8), the first order reconstructed curve is a line. However when

he second item is considered, namely, l = 2, the line changes into a

onic (the line and the conic are shown in Fig. 1(a)). When adding

ore items, the reconstructed curve intends to represent an accu-

ate approximation of the original shape of the hand. As shown in

ig. 2, when k = 10, the 10th order reconstructed curve describes
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Fig. 2. Reconstruction of the hand shape from the first N items of its CPDs.
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the main features of the hand, but when l = 30, the 30th order re-

constructed curve accurately represents the shape of the hand. In

general, like fourier descriptor, the CPDs of lower index contain in-

formation about general features of curves, and ones of high index

contain finer details. Furthermore, The CPDs can describe a curve by

only a few values. It is noted that each Fourier descriptor (e.g. El-

lipse Fourier Descriptor) contains four parameters, but each CPD con-

tains two parameters. This is because Fourier descriptors are complex

numbers each of which has two parameters.

In addition, we define a representation error of CPDs to evaluate

the accuracy of representation according to (8) as follows

RE =
√∑N

i=0
[(xi − xl(ti))2 + (yi − yl(ti))2] (9)

3.3. The stability of reconstructed curves

In this section, we discuss the stability of representing curves us-

ing CPDs. The stability means as the number of CPDs increases, the

representation errors of reconstructed curves from these CPDs de-

crease. As shown in Fig. 2, the reconstructed curve will approximate

the original curve more and more accurately as its order increases

without suffering from vicious oscillation.

Theorem 1. Supposed that a given digitized curve consisting of N points,

(xi, yi), i = 1, 2, . . . , N, is represented by Chebyshev polynomial descrip-

ors a j, b j, j = 0, 1, 2, . . . , N, then the Nth order reconstructed curve

passes through all these points (xi, yi).

Proof. Let f (t j) = x j, g(t j) = y j, where t j = cos ( j−0.5)π
N and then, we

can obtain the reconstructed curve according to (8) and (7). Centering

the curve center of mass at the origin of the coordinate system and

substituting ai and bi in (7) into (8), we have the equations of the

econstructed curve as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xN(t) =
N∑

i=1

aiPi(t) =
N∑

i=1

2

N

N∑
j=1

f (t j)Pi(t j)Pi(t)

yN(t) =
N∑

i=1

biPi(t) =
N∑

i=1

2

N

N∑
j=1

g(t j)Pi(t j)Pi(t)

It should noted that a0 = 2
N

∑N
j=1 f (t j)P0(t j) = 0 and b0 = 2

N∑N
j=1 g(t j)P0(t j) = 0. For an arbitrary value tk = cos((k − 0.5)π )/N,

substituting t into the above equations and rearranging the order of
k
ummation, we have

xN(tk) = 2

N

N∑
j=1

f (t j){
N∑

i=1

Pi(t j)Pi(tk)}

yN(tk) = 2

N

N∑
j=1

g(t j){
N∑

i=1

Pi(t j)Pi(tk)}
(10)

Denote the sum
∑N

i=1 Pi(t j)Pi(tk) by S( j, k) and let t j = cos(θ j) and

k = cos(θk). Then, we have

( j, k) =
N∑

i=1

Pi(t j)Pi(tk) =
N∑

i=1

cos(iθ j) cos(iθk)

= 1

2

N∑
i=1

[cos(i(θ j + θk)) + cos(i(θ j − θk))] (11)

Considering θ j = ( j − 0.5)π/N, θk = (k − 0.5)π/N,
∑N

i=1

os(iθ ) = (sin(Nθ/2) cos(N + 1)θ/2)/ sin(θ/2). Then we may

educe from (11) that S( j, k) = 0 when j �= k and S( j, k) = N/2 when

j = k. Furthermore, from (10), we have

xN(tk) = f (tk) = xk

yN(tk) = g(tk) = yk

The above equations mean that the point (xk, yk) lies on the re-

onstructed curve. That is, the Nth order reconstructed curve passes

through all points (xi, yi), i = 1, 2, . . . , N �

The above theorem shows that the Nth order reconstructed curve

an accurately represent the curve consisting of N points. The prop-

rty of lth (l ≤ N) order reconstructed curve is given by the following

heorem.

heorem 2. The representation of a digitized curve consisting of N

oints using lth (l ≤ N) order reconstructed Chebyshev polynomial curve

s stable.

roof. Denoting parametric equation of the lth order reconstructed

urve by (xl(t), yl(t)), Nth order reconstructed curve by (xN(t), yN(t)),

according to (8), we have

|xl(t) − xN(t)| = |
N∑

i=l

aiPi(t)|

|yl(t) − yN(t)| = |
N∑

i=l

biPi(t)|
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Considering |Pi(t)| ≤ 1 and the coefficients |ai| and |bi| decrease

apidly as the index i increases [6], we have the following inequality

|xl(t) − xN(t)| ≤
N∑

i=l

|ai| ≤ (N − l)al

|yl(t) − yN(t)| ≤
N∑

i=l

|bi| ≤ (N − l)bl

It is clear from the above inequality and Theorem 1 that the curve

xl(t), yl(t)) approximates the original curve (xN(t), yN(t)) as l goes to

. That is, the representation of a digitized curve using the lth order

econstructed Chebyshev polynomial curve is stable. �

In addition, because the first few low order CPDs can capture the

verall shape while the high order ones capture its finer details, we

an choose enough CPDs to preserve the useful information of a curve

nd filter out the noise introduced by sampling and quantizing. Our

xperiments show CPDs remain stable when we resample a given

urve with different methods.

.4. The similarity-invariant based on CPDs

Invariant descriptors can be used to recognize an object from its

mage without detailed prior knowledge of the actual transformation

uch as similarity or other transformations. Like Fourier descriptor,

here exist similarity invariants based on CPDs. We also call them

imilarity invariant descriptors based on CPDs, which can be used

o recognize a specific curve undergoing a similarity transformation.

pecifically, the similarity invariants of a certain curve mean that they

emain invariant when the curve is translated, scaled or rotated. Ac-

ordingly, we have the following theorem.

heorem 3. Supposed that a given curve is represented by

hebyshev polynomial descriptors ai, bi, i = 0, 1, 2, . . . , N, then

a2
i

+ b2
i
/
√

a2
1

+ b2
1
, i = 2, 3, . . . , N are similarity invariant descriptors

roof. In order to obtain similarity invariant descriptors based on

PDs, we rewrite (8) in vector form as

xN(t)
yN(t)

]
=

[
a0

b0

]
+

N∑
i=1

[
ai

bi

]
Pi(t) (12)

Supposed that the curve(C) given by the above equation is trans-

ated to a point (tx, ty), scaled by a scale factor s and rotated around

rigin by an angle α counterclockwise, then the equation of the trans-

ormed curve(C′) can be given by

x′
N(t)

y′
N(t)

]
=

[
a0 + tx

b0 + ty

]

+ s

[
cos(α) sin(α)

− sin(α) cos(α)

]
N∑

i=1

[
ai

bi

]
Pi(t)

The above equation can be further written as follows

x′
N(t)

y′
N(t)

]
=

[
a0 + tx

b0 + ty

]

+ s

N∑
i=1

[
ai cos(α) + bi sin(α)

−ai sin(α) + bi cos(α)

]
Pi(t) (13)

On the other hand, we may define the transformed curve(C′) as

x′
N(t)

y′
N(t)

]
=

[
a′

0

b′
0

]
+

N∑
i=1

[
a′

i

b′
i

]
Pi(t) (14)

By comparing (13) and (14), we have

′
0 = a0 + tx b′

0 = b0 + ty
a′
i = s(ai cos(α) + bi sin(α))

b′
i = s(−ai sin(α) + bi cos(α))

According to the above identities, we have

′
i
2 + b′

i
2 = s2(a2

i + b2
i )

Hence,
√

a2
i

+ b2
i
/
√

a2
1

+ b2
1
, i = 2, 3, . . . , N are the similarity in-

ariant descriptors based on CPDs �

From the above formulae, we can obtain N − 1 similarity invariant

escriptors based on CPDs. Clearly, these descriptors contain neither

cale factor s, nor the rotation α. Then they can be used to recognize

he objects undergoing similarity transformation.

.5. CPDs independent on starting points

Generally, there are two end points on an open curve. Either of the

wo end points may be chosen as a starting point when the CPDs are

sed to represent the curve. In this section, we discuss the CPDs are

ndependent of the starting points.

In (7), The CPDs ai and bi are obtained by choosing the point

x1, y1) as the starting point. Considering t j = cos ( j−0.5)π
N , j =

, 2, . . . , N, we have Pi(t j) = cos(i cos (N− j+1−0.5)π
N ) = Pi(tN− j+1),

amely, Pi(t j) = Pi(tN+1− j), j = 1, 2, . . . , N. If we choose the point (xN,

N) as a starting point and denote the corresponding obtained CPDs

y a′
i

and b′
i
, then we have

′
0 = 1

N
(xN + xN−1 + · · · + x1) = 1

N

N∑
j=1

x j = a0

a′
i = 2

N
(xNPi(t1) + xN−1Pi(t2) + · · · + x1Pi(tN))

= 2

N
(xNPi(tN) + xN−1Pi(tN−1) + · · · + x1Pi(t1))

= 2

N

N∑
j=1

x jPi(t j)

= ai

In a similar way, we have b′
i
= bi i = 0, 1, 2, . . . , N. Consequently,

t follows that the CPDs remain invariant under the different starting

oints.

. Derivatives and curvatures of curves based on CPDs

For a digitized open curve, it is difficult to estimate its derivative

nd curvature at a given point, especially at those points nearby the

ndpoint. In this section, we focus on how to use the CPDs to estimate

he curvatures and derivatives of curves.

According to (1), we can easily obtain the formula for the first

erivative of the curve described by (8)

x′(t) =
N−1∑
i=0

āiPi(t) − 1

2
ā0

y′(t) =
N−1∑
i=0

b̄iPi(t) − 1

2
b̄0

(15)

here āi = ∑N
k=i+1, k−i odd 2kak and b̄i = ∑N

k=i+1, k−i odd 2kbk.

Similarly, the formula for the second derivative is as follows

x′′(t) =
N−2∑
i=0

âiPi(t) − 1

2
â0

y′′(t) =
N−2∑
i=0

b̂iPi(t) − 1

2
b̂0

(16)
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Fig. 3. Ten original handwritten digits.

t

C

Fig. 4. The reconstructed curves of 10 handwritten digits from their CPDs.

Fig. 5. Classification error rate for CPDs versus Fourier descriptor.

Fig. 6. The comparison of CPDs and FDs.
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where âi = ∑N
k=i+2, k−i even(k2 − i2)kak and b̂i = ∑N

k=i+2, k−i even

(k2 − i2)kbk.

For every point on curves, we may use (15) and (16) to compute

he curvature at the point. For example, for a given point (xk, yk) on

a certain curve, from Theorem 1, we have xk = x(tk) and yk = y(tk).

Hence, the first and second derivatives of functions x(t) and y(t) at

this point are x′(tk), y′(tk), x′ ′(tk) and y′ ′(tk) respectively. Then the cur-

vature (Ck) of the curve at this point can be obtained by the following

formula.

k = x′(tk)y′′(tk) − y′(tk)x′′(tk)

(x′(tk)2 + y′(tk)2)(3/2)
(17)

As discussed in Section 3.2, only the first few CPDs in (8) may

be used to estimate the curvatures because these CPDs are efficient

enough to describe the curve. Consequently, the estimation of curva-

tures using CPDs has lower computational complexity. On the other

hand, the curvatures of the curve can be computed at varying levels

of detail from the corresponding varying order reconstructed curve.

This means the curvature scale space representation can be obtained

by CPDs. From (15) and (16), it follows that the use of CPDs to estimate

curvatures of curves at varying levels of detail is efficient because the

calculation results at the previous level of detail can be reused. For

instance, if the curvatures of nth order reconstructed curve have been

estimated, then the curvatures of (n + 1)th order reconstructed curve

can be obtained by only computing the 4 coefficients: ān+1, b̄n+1, ân+1

and b̂n+1. In addition, the curvatures of the open curve at those points

nearby the endpoint can be directly computed without padding this

curve.

5. Experimental results

In this section, we illustrated the effectiveness of CPDs through us-

ing it to represent and recognize handwritten digits, and further pre-

sented the comparison of CPDs and FDS in representing five shapes. In

addition, due to the exact mathematical expression of CPDs, we per-

formed a test on how to estimate the curvatures of digitized curves

using CPD representation.

5.1. Recognition of handwriting and comparison of representation

stability

The strokes of handwritten digits are typically open curves.

Hence, we conducted the experimental evaluation on handwrit-

ten digits from UCI pendigits data set which can be found at

https://archive.ics.uci.edu/ml/datasets. There are 10992 handwritten

digits of the 10 numeral classes (”0”-”9”) in this data set and each

of handwritten digits consists of 8 points. In addition, the number

of handwritten digits of each numeral class is approximately 1000.

Fig. 3 shows 10 different handwritten digits obtained by selecting

randomly one from handwritten digits of each numeral class. In this

figure, we can see every handwritten digit contains 8 points and we

connected them with the straight line segments in order. Clearly,

the handwritten digits are coarsely represented due to the large and
qual distance between every two adjacent points. We respectively

sed CPDs to represent the 10 handwritten digits and reconstructed

urves of these original handwritten digits from their corresponding

PDs. The resulting curves are showed in Fig. 4. From this figure, we

ee that the reconstructed curves are able to accurately represent the

andwritten digits and perfectly fill the gaps between the every two

djacent points. Particularly, there are no vibration near the end-

oints. In addition, the CPDs can well represent the self-overlapping

urves (e.g. “2”,“4”,“7” and “8”).

In order to examine the classification performance of CPDs repre-

entation, we used two third of the handwritten digits in the data set

or training, the remaining ones for testing, and then computed the

PDs and Fourier descriptor of these handwritten digits respectively.

fterward, Euclidean distance was used as the metric to perform

-nearest neighbors classification of the test set from the training set,

here k ranges from 1 to 10. The resulting classification error rates

re shown in Fig. 5.

https://archive.ics.uci.edu/ml/datasets
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Fig. 7. The representation errors from the first k (from 50 to 150 with step size 10)

items of CPDs.

Fig. 8. The representation errors from the first k (from 50 to 150 with step 10) items

of FDs.
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Fig. 9. Estimating curvatures with CPDs. (a) Sampling some points from an astroid. (b) Es
It is clear from this figure that the CPDs perform consistently bet-

er than Fourier descriptors except when k takes values 3 and 10. This

s mainly because CPDs can not only represent the open curve ac-

urately and stably but also capture its main features well. In par-

icular, CPDs can stably represent those points near both the ends

f open curves. We illustrated this further by the following experi-

ental evaluation on five shapes which were selected randomly from

PEG-7 Shape 1 Part B data set [5]. In order to have open curves, a

art of every shape was cut away as shown in Fig. 6(a). We used CPDs

nd FDs to represent these shapes, and then reconstructed them us-

ng the first 50 items of their descriptors respectively (see Fig. 6(b)

nd (c)). It is clear from Fig. 6(b) that CPDs accurately represented all

he five shapes. Conversely, from Fig. 6 (c), we can see that FDs failed

o work well for them. The reason is that both the ends of the rep-

esented curves suffered from severe oscillation, especially for bears

nd boots.

In order to further explore the stability of CPDs and FDs, we in-

reased the number of items of CPDs and FDs from 50 to 150 with

tep size 10 to respectively reconstruct the five shapes, followed by

sing the representation error (9) to evaluate the accuracy of repre-

entations. Noting that the representation errors of FDs can be de-

ned in a similar way as (9). Fig. 7 shows the representation errors

f CPDs for the five shapes and Fig. 8 shows the ones of FDs. From

ig. 7, we can see that all the representation errors for the five shapes

trictly decrease as the number of the items increases. This is consis-

ent with the Theorem 2. In addition, we can also find that represen-

ation errors for pigeons and bears are larger than ones for the other

hree shapes. This is because the two shapes are not far smoother

han other shapes, leading to their CPDs having slower convergence

ate [6]. On the other hand, from Fig. 8, we find that the representa-

ion errors for butterflies and boots start to increase rapidly when the
timating curvatures of an astroid from its CPDs. (c) Errors of estimated curvatures.
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numbers of the items are 80 and 90 respectively. For bears and cars,

the representation errors increase when the numbers are 100. This

means the represented curves for these shapes suffer from more and

more severe oscillation as the number of items of FDs increase. Con-

sequently, In contrast to FDs, CPDs are suitable for representing open

shapes.

5.2. Estimating curvatures of digitalized curves

The CPDs have a powerful ability to represent open curves. Hence,

the curvature of an open curve can be accurately estimated from its

CPDs. In order to illustrate the effectiveness of estimating curvatures

with CPDs, we consider an analytical open curve, namely astroid,

the parametric equation of which is given by x = 2 cos3 t, y = 2 sin3 t .

Although this defines a closed curve for t ∈ [0, 2π ), we consider

∈ [−π/2, π/2] in order to have an open curve. Specifically, let the

variable t take values from −π/2 to π /2 using step size 0.1, then, we

can obtain the digitized curve consisting of 32 points, which is pre-

sented in Fig. 9(a). According to the parametric equation of the as-

troid, we computed its curvatures at each point and their resulting

values, denoted by dots, are shown in Fig. 9(b). On the other hand, we

used the CPDs to represent the digitized curve and then computed its

curvatures at each point. The resulting curvatures, denoted by circle,

are also shown in Fig. 9(b). In Fig. 9(c), the errors between the es-

timated curvatures and theoretical curvatures were presented. From

these two figures, we can see that the estimated curvatures with CPDs

almost are equivalent to the theoretical curvatures except at the last

point and the cusp point on the digitized curve. As shown in Fig. 9(b),

the 16th point is a cusp point where the error of the curvature is 0.4

(see Fig. 9(c)). Clearly, this cusp point is a discontinuous one, which

leads to large errors of curvatures. In order to reduce the error, we can

further sample more points nearby the cusp point. In fact, the use of

more sampling points means more CPDs are used to represent the

digitized curves [6]. The large error of the curvature also appears at

the last point (i.e. end point). In a similar way, we can also use more

sampling points to reduce it. It should noted that use of CPDs to rep-

resent open curves can perform well on the analysis of curves (e.g.

the estimation of curvatures) without needing to pad the curves with

some data.

6. Conclusion

In this paper, we present the concept of Chebyshev polynomial

descriptor (CPD) and introduce it to represent open curves. Based

on analysis of properties of Chebyshev polynomial, we present the

general formula for the computation of CPDs and the parametric

equations of the reconstructed curve. In addition, we investigate the

properties of CPDs, including its stability, the similarity-invariant

and invariance under different starting points. Due to the exact

mathematical expression of CPDs, we discuss how to use CPDs to

compute the curvature of an original open curve.
In our experiments, we show the powerful ability of CPDs to rep-

esent open curves. For example, the representation of handwritten

digits is very stable, especially at the those points nearby endpoints.

Furthermore, the CPD representations are easy to implement due to

the simple formula for CPDs and less computational cost. We show

this good characteristic by computing the curvatures of digitized

curves.

Future work should study affine invariant CPDs and how to ap-

ply the invariants to recognition of objects. In addition, we would like

to extend Chebyshev polynomial descriptors to three dimension sur-

faces representation.
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