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a b s t r a c t

Implicit polynomial (IP) curve is applied to represent data set boundary in image processing and com-
puter vision. In this work, we employed it to reduce dimensionality of time series and produce similarity
measure for time series mining. To use IP curve, time series was transformed to star coordination series.
Then the star coordination series was fitted by implicit polynomial curve. That is, IP curve approximated
(IPA) time series. Lastly, similarity measure of the time series was produced from the fitting implicit poly-
nomial curve. To guarantee no false negatives, the lower bounding lemma for the similarity measure
based on IP curve (IPD) was proved. We extensively compared IPA with other similarity measure and
dimension reduction techniques in classification frameworks. Experimental results from the tests on var-
ious datasets indicate that IPA is more efficient than other methods.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

A time series is a collection of observation made chronologi-
cally, which can be easily obtained from scientific and economic
application, e.g., daily fluctuations of stock market, electrocardio-
gram, medical and biological experimental observations etc. There
are various kinds of time series data related research, one of which
is time series data mining. This research includes indexing, classi-
fication, clustering and representation of time series. In the context
of time series data mining, the key problem is how to represent
and measure the time series data (Fu and Chung, 2011) because
the time series is highly dimensional and needs to find representa-
tion techniques to reduce its dimensionality and still preserve its
fundamental characteristic.

In the past decade, various representation methods and similar-
ity measures for time series can be found in the literature (Ding
and Trajcevsk, 2008). Based on the underlying approximation
schemes, these studies can be divided into two categories: piece-
wise approximation and continuous approximation. Of these two
approximation representations, the former uses the segmented
means to represent the time series, such as Piecewise Aggregate
Approximation (PAA) (Keogh and Chakrabarti, 2001), Adaptive
Piecewise Constant Approximation (APCA)(Keogh and Chakrabarti,
2002), Symbolic Aggregate approXimation (SAX)(Lin and Keogh,
2007), Indexable Piecewise Linear Approximation (PLA) (Chen
and Chen, 2007), Derivative time series Segment Approximation
(DSA) (Gullo and Ponti, 2009) and Perceptually Important Points
(PIP) (Fu and Chung, 2008), Discrete Wavelet Transformation
(DWT) (Pong Chan and Fu, 1999) etc., and the latter uses a low-or-

der continuous function to represent the time series, such as
Chebyshev Polynomials (CHEBY) (Cai and Ng, 2004), Discrete Fou-
rier Transformation (DFT), Single Value Decomposition (SVD)
(Faloutsos and Ranganahan, 1994.) and Discrete Cosine Transfor-
mation (DCT) (Korn et al., 1997) etc.

In conjunction with the above representations, there are many
distance measures for similarity of time series data, such as Euclid-
ean Distance (ED) (Faloutsos and Ranganahan, 1994), Dynamic
Time Warping (DTW) (Keogh and Ratanamahatana, 2005), distance
based on Longest Common Subsequence (LCSS) (Vlachos et al.,
2002), Edit Distance with Real Penalty (ERP) (Chen and Ng,
2004), Edit Distance on Real sequence (EDR) (Chen, 2005), Se-
quence Weighted Alignment model (Swale) (Morse and Patel,
2007), Spatial Assembling Distance (SpADe) (Chen and Nascimen-
to, 2007) and similarity search based on Threshold Queries
(TQuEST) (Aßfalg and Kriegel, 2006) etc. After representing the
time series, we can use all these similarity measures to evaluate
the representation method.

Piecewise approximation represents time series with discontin-
uous function, but it suffers from the three major problems: (1)
Piecewise approximation methods lead to the unnecessary error
or deviation after dimensionality reduction. The methods represent
a time series by dividing it into segments and recording the mean
value of the data points that fall within each segment. However,
the sensitivity to length of each segment can seriously reduce the
accuracy of the representation model or dimensionality method.
For instance, PAA approximates a time series by dividing it into
equal length segments and using the average values of each seg-
ment as its representation. APCA divides the time series into disjoint
segments of different lengths according to the shape of time series.
However, these representation methods may distort the shape of
time series because the piecewise approximation ignores most of
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time series information. (2) There is no correlation among the ele-
ments of segments representation dataset. Each segment of time
series is fitted by constant, line or low degree curve, which are used
to represent the time series. It is clear that mean value (e.g. PAA,
APCA) or coefficients of fitting curve (e.g. PLA) of each segment
dot not have any correlation, which leads to loss of the general infor-
mation of time series; (3) Piecewise approximation methods are not
efficient for dimension reduction. Many segments of piecewise
approximation are still in high dimensionality after representation
of time series. Therefore, piecewise approximation representation
methods cannot efficiently reduce the dimensionality of time series.

Continuous approximation minimizes the maximum deviation
(minimax approximation) between time series data and continu-
ous function that often is polynomial curve, e.g. Chebyshev Polyno-
mials. Polynomial approximation usually suffers the range
oscillation phenomenon, especially to high degree polynomial.
Other continuous approximations e.g. DWT, DFT are not able to
minimize the maximum deviation from the original data points.

In order to overcome the above weaknesses, in this paper, we
present a time series representation model that is conceived to sup-
port accurate and fast similarity detection. This model is called IP
curve approximation (IPA), the advantage of which is due to repre-
senting the time series using continuous function and Least Squares
(LS) approximation. Therefore, the weaknesses from piecewise
approximation can be avoided. In the other hand, the range oscilla-
tion of the polynomial curve (e.g. CHEBY) is overcome due to the
time series representation with IP curve that is function curve of
two variables. In particularly, the LS approximation is better than
minimax approximation. Actually, the reason of IPA outperforming
other representation methods is that IPA can describe both the
whole information and the local information of time series best.
Specifically, the coefficients of IP curves when represent to time ser-
ies appear to be relatively insensitive to noise or to modest changes
(Subrahmonia et al., 1996.), because of this stability, IPA can ignore
minor or noisy information of time series. In the other hand, IP
curve can accurately represent time series with small number of
coefficients and capture the important tends of time series.

As a preview, we make the following contribution: (1) Trans-
form the time series into star coordinate series, which is a bounded
data set. Besides, the lower bounding lemma for the data set is
proved; (2) Fit the star coordinate series data with IP curve, the
coefficients of which are used to represent the time series; (3) Pres-
ent the similarity measure based the IP curve, and the lower
bounding lemma for this measure is proved.

This paper is organized as follows. Below we discuss the related
work. In the next section, we review the IP curve, and focus on the
Min–Max algorithm. In the Section 3, we show how to transform
the time series to star coordinate series. The methods of transfor-
mation and inverse transformation are given. Finally, the lower
bounding lemma is proved. In Section 4, we show how to fit the star
coordinate series with IP curve and give an example. In Section 5,
we present the definition of IPD, and its lower bounding lemma is
proved. In Section 6, we present our experimental setup and result.

2. Related work

Time series can be regarded as a discrete function, as the domain
is a set, rather than an interval, which can be written as follows:

T ¼ fðti;v iÞji ¼ 1;2; � � �ng ð1Þ

Where ti is time, vi is time series data. If ti only expresses the or-
der of time series data, then Eq. (1) can be simplified as
T ¼ v iji ¼ 1;2; � � �n. The fundamental problem of time series data
representation is to determine a function to approximate Eq. (1)
for dimensionality reduction.

There are mainly two basic approaches as we mentioned above:
piecewise approximation and continuous approximation. The first
approach includes PAA, APCA, PLA, DSA and PIP. Among these
methods, PAA is the simplest method. In this method, the average
value of each segment is used to represent the corresponding set of
data points. Again, with time series T̂ ¼ fv̂ iji ¼ 1;2; � � �ng, the times
series can be represented by

v̂k ¼
1
w

Xekþw�1

i¼ek

v i; k ¼ 1;2; � � �m

Where ek denotes the starting data points of the kth segment in
time series T̂. w is the length of each segment (w = n/m) and m is
the dimension after dimensionality reduction. Fig 1 shows a time
series data representation with PAA, the length of which is 286.
The time series is divided into 8 segments, the length of which is
about 35. It is clear from Fig. 1 that the PAA algorithm uses the
fixed length of segment, which distorts the shape of the times ser-
ies and produces much more error. In order to overcome the disad-
vantage of APP, the APCA algorithm is proposed. A major difference
from PAA is that APCA can identify segments of variable length.
That is, the length of each segment is not fixed, but adaptively to
the shape of the time series. In contrast to the PAA, the APCA is able
to produce higher quality approximations of a time series. Both
PAA and APCA approximate the time series with constant. Further-
more, the straight lines are used to approximate the time series in-
stead of constant e.g. PLA. This representation tends to closely align
the endpoint of consecutive segments, giving the piecewise
approximation with connected line.

Furthermore, to reduce the dimensionality of time series, pre-
serving the salient points and featuring derivative estimation of
time series are two promising methods. The former is called as per-
ceptually importance points (PIP) representation, and the latter is
called as derivative time series segment approximation (DSA) rep-
resentation. In the PIP representation, all the data points are found
and reordered by its importance by going through the PIP identifi-
cation process, which can be found in (Fu and Chung, 2008). DSA
representation features derivative estimation, segmentation and
segment approximation to provide high sensitivity in capturing
the main trends of time series. Both of the two methods involve
a segmentation scheme that employs the paradigm based on a
piecewise discontinuous function. Hence, they still fall in the cate-
gory of piecewise approximation representation method. In partic-
ular, the two methods cannot prove the lower bounding lemma for
corresponding similarity measure.

Time series representation methods with a continuous polyno-
mial include SVD, DFT, and CHEBY etc. SVD is computationally
more expensive than the other methods for dimensionality reduc-
tion due to its space rotation and truncation applied on a data

Fig. 1. Representation with PAA, APCA and CHEBY.
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matrix. Both DFT and CHEBY are based on the use of a set of ortho-
normal functions and the time series is represented by their relat-
ing coefficients. Major differences between DFT and CHEBY is that
CHEBY approximates the time series with minimizing the maxi-
mum deviation from the times series data.

The similarity measures often are presented based on the times
series representation. Faloutsos and Ranganahan (1994) points out
that all similarity measures need to meet the lower bounding lem-
ma in order to guarantee no false dismissals. Supposed that Q1 and
Q2 are times series, F(Q1) and F(Q2) are representations of Q1 and
Q2, respectively. Then the lower bounding lemma is

DeuðFðQ 1Þ; FðQ 2ÞÞ 6 DeuðQ 1;Q 2Þ ð2Þ

Where Deu(F(Q1), F(Q2)) is the distance measure between the
two representations F(Q1) and F(Q2). Deu(Q1,Q2) is the distance
measure between the time series Q1 andQ2. That is, the distance
between two transformed data in the reduced space should be a
lower bound of their actual distance in the original space. The lem-
ma is critical in guaranteeing no false negatives in similarity
search, index, classification and other mining tasks of the time ser-
ies. The tighter the lower bound, the smaller is the number of false
positives.

Euclidean Distance is the most straightforward similarity mea-
sure for time series, the disadvantages of which are very sensitive
to noise and misalignments in time, and are unable to handle local
time shifting. Therefore, some other similarity measures are pre-
sented: DTW performs a non-linear mapping of sequence to the
other one by minimizing the total distance between them. LCSS
uses the length of the longest common subsequence of two se-
quences to define the distance between them, which can process
noise time series by performing approximate matching rather than
exact matching of time series. ERP supports local time shifting.
DTW is usually chosen as similarity measure to evaluate represen-
tation methods.

For time series representation methods, nearest neighbor classi-
fier is often chosen to evaluate the efficacy of them. Ding and

Trajcevsk, (2008) discuss the advantages with this approach. For
example, the accuracy of the 1NN classifier directly reflects the
effectiveness of the similarity measure. In addition, the 1NN classi-
fier is easy to implement and is parameter free, which is helpful to
fairly compare various representation methods.

3. IP curve representation of a time series

In this section, we discuss how to transform the time series to
star coordinate series and how to preprocess the star coordinate
series so that it can be fitted by the IP curve efficiently. In addition,
the key properties of the star coordinate series and IP curve are dis-
cussed. In addition, the lower bounding lemma for star coordinate
series is proved.

3.1. IP curve approximation

Implicit polynomial (IP) curve is a planar curve, and it can be
specified by the zero set of a 2D polynomial of degree n given by

f ðx; yÞ ¼
X

iþj6n;i;jP0

aijxiyj ¼ a00 þ a10xþ a01yþ a20x2 þ a11xy

þ a02y2 þ � � � þ an0xn þ an�1;1xn�1yþ � � � þ a0nyn ¼ 0 ð3Þ

The polynomial f(x,y) can also be represented in the coefficient
vector form as follows

f ðx; yÞ ¼ XT A ð4Þ

where AT ¼ ða1 a2 � � � am�1 amÞ and XT ¼ ½1xy � � � xn xn�1y � � � yn�. m
is the number of coefficients of f(x,y) and m = (n + 1)(n + 2)/2.

The IP curve has been widely applied to many fields, such as ob-
ject recognition (Taubin et al., 1994; Kautsky and Flusser, 2007;
Subrahmonia et al., 1996; Tarel and Cooper, 2000; Oden et al.,
2001), pose estimation (Yazicioglu et al, 2009; Zheng et al.,
2009), coding (Helzer et al., 2000), boundary estimation from
intensity or color images (Tasdizen and Cooper, 2000), symmetry
detection (Wu and Li, 2002; Lebmeir and Richter Gebert, 2008;

Fig. 2. Star coordinate series transformation.

Fig. 3. IP curve fitting star coordinate series.
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Marola, 2005), image database indexing (Jiang and Xu, 2007) etc.
Compared with the other models (e.g., B-spline, Fourier descrip-
tors) to represent data set the elements of which are usually points
of outline of object, IP curve has many merits. (1) IP curve can
accurately describe data set and all parameters to describe it de-
pend on coefficients of IP; (2) IP curve can be easily operated and
used due to its good analytic expression. In addition, fitting IP
curve is very robust to noise and can fill in missing part of data set.

The representation of IP curve is to describe data set points S
(e.g. object boundary for 2D objects) by the zero set of IP, which
is the fitting problem of IP curve. The fitting problem is to find a
coefficient vector that leads to an IP curve f(x,y) = 0 that best fits
the data set points under a criterion to be specified. In the past dec-
ades, many methods have been developed, such as 3L method
(Blane and Lei, 2000), RR method (Tasdizen and Tarel, 2000),
Min–Max method (Helzer et al., 2004) etc. Among them, the
Min–Max method is much more stable, which further improves
the RR and other algorithm by constraining the gradient vector
along the zero set of IP to have a norm for each point of the data
set. In order to obtain more stable IP curve, we usually give the
points of data set a weight to balance the effect of the constraining
data set.

In this paper, we use Min–Max algorithm to fit IP curve, which
is reviewed as follows. We define Xx and Xy as the derivatives of the
monomials vector X, with respect to x and y, respectively and de-
note the local normal unit vector at each of the data set points
by (vk,ww), where k ¼ 1;2; � � � ;N and N is the number of points in
the data-set.

We construct the matrix of monomials and the matrices of
monomials partial derivative in the following way:

M0 ¼ Xðx1; y1Þ Xðx2; y2Þ � � � XðxN; yNÞ½ �

Mx ¼ Xxðx1 ;y1Þ
jjXðx1 ;y1Þjj1

Xxðx2 ;y2Þ
jjXðx2 ;y2Þjj1

� � � XxðxN ;yNÞ
jjXðxN ;yNÞjj1

h i

My ¼ Xyðx1 ;y1Þ
jjXðx1 ;y1Þjj1

Xyðx2 ;y2Þ
jjXðx2 ;y2Þjj1

� � � XyðxN ;yN Þ
jjXðxN ;yNÞjj1

h i
and the following gradient coordinates vectors:

v ¼ v1 v2 � � � vN½ �

w ¼ ½w1 w2 � � � wN �

Defining MT ¼ M0 Mx My½ � and bT ¼ 0 v w½ �, we can for-
mulate the fitting criteria as

MA ¼ b

We use a linear least squares algorithm to solve the above equa-
tion, and can obtain the coefficients vector of fitting IP curve:

A ¼ ðMT MÞ�1MT b

Wu and Li, (2004), Wu, (2007) propose the determination algo-
rithms of degree, closeness and connectivity of IP curve, by which
IP curve with the adaptive degree is selected to fit data set points
with closeness and connectivity of constraint condition.

3.2. Star coordinates transformation for time series

The initial motivation of the star coordinates work is to gain in-
sight and numerical details for further analysis by visualizing mul-
tidimensional datasets (Tan et al., 2006). The basic idea of star
coordinates is to arrange the coordinate axes on a circle on a
two-dimensional plane with equal angles between the axes with
origin at the center of the circle. The data points from datasets
are scaled to the length of the axis. In this paper, we can efficiently
use an IP curve representation of the star coordinate for the indi-
rect analysis of time series, such as dimension reduction and fea-
ture extraction, because IP coefficients are the features that are
extracted from the star coordinate transformed from the corre-
sponding to the time series. The transformation formula for star
coordinates from the times series (1) is the following (Li, 2011)

xi ¼ v i cosð2pl tiÞ
yi ¼ v i sinð2p

l tiÞ

(
i ¼ 1;2; � � �n ð5Þ

Where l = 2p/(tn � t1), (xi,yi) is star coordinate point mapping
from time series point (ti,vi). It is clear from (5) that the time series
data points is converted to star coordinate ones which shape closed
curve around origin (Fig. 2a). The angle between the two adjacent
points (xi+1,yi+1) and (xi,yi) corresponding to origin is 2p(ti+1 � ti)/l.
We can obtain inverse transform formula from (5) as follows.

v i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

q
i ¼ 1;2; � � �n

ti ¼
l arccosðxi=v iÞ=2p yi > 0

l½arccosð�yi=v iÞ þ p�=2p yi 6 0

�
8>>>><
>>>>:

ð6Þ

Fig. 4. IP curve representation for the time series.

Table 1
Datasets used in the experiments.

Dataset Size # of classes Length

Adiac 781 37 176
Beef 60 5 470
Coffee 56 2 286
ECG200 200 2 96
Mixed-BagShapes 160 9 1614
Trace 200 4 275
Diatom 322 4 345
FaceAll 2250 14 131
ECGFive 884 2 136
GunPoint 200 2 150
Haptics 463 5 1092
SwedishLeaf 1125 15 128
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Definition 1. The series ðxi; yiÞ; i ¼ 1;2 � � �n is called star coordinate
series if it is transformed from the time series (1) according to (5).

Fig. 2. (a) shows one star coordinate series transforming from
the time series in Fig. 1, in which the first and the last star coor-
dinate series points are marked with ‘‘⁄’’ and ‘‘+’’, respectively.
Generally, there exists a gap between the two points, which will
result in the instability of fitting IP curve. In order to overcome
this problem, the gap is removed by smoothing the two points
and their neighbor points. Specially, Denoting the first point by
(x1, y1) and the last point by (xn, yn), we can smooth these points
(xl�1,yl�1), (xl�2,yl�2), ..., (x1,y1), (xn,yn), (xn�1,yn�1), ..., (xn�l,yn�l)
with 5-point moving average, where l(l > 0) can be chosen
according to size of the gap. Fig. 2 (b) shows the result of
smoothing these points with l = 10. Obviously, the gap disap-
pears. Fig. 2(c) shows the original time series with dotted line
and the inverse transformation time series from star coordinate
series with solid line, in which the difference between beginning
and ending part of them can be found, but it cannot affect the IP
representation.

Fig. 2(d) shows two star coordinate series of length 386 and
lines between their corresponding points. From Definition 1, we
can find that all of these lines pass through the origin. Specially,
supposed S = {(xi, yi)|i = 1, 2, ...n} and Ŝ ¼ fðx̂i; ŷiÞji ¼ 1;2; � � �ng are
two star coordinate series, then (xi, yi) and ðx̂i; ŷiÞ which belong to
the two series respectively lie on the straight line y = kix (ki is slope
of the line).

Lemma 1. Let T = {(ti, vi)|i = 1, 2, ...n} and T̂ ¼ fð̂ti; v̂ iÞji ¼ 1;2; � � �ng
be two time series, and S = {(xi, yi)|i = 1, 2, ...n} and
Ŝ ¼ fðx̂i; ŷiÞji ¼ 1;2; � � �ng be their corresponding star coordinate
series as defined in Eq. (5). Then:

DeucðS; ŜÞ 6 DeucðT; T̂Þ ð7Þ

Proof. According to the Euclidean distance formula, we have

D2
eucðS; ŜÞ ¼

Xn

i¼1

½ðxi � x̂iÞ2 þ ðyi � ŷiÞ2�

Substituting (xi, yi) in Eq. (5) for the above calculus, then we
have

D2
eucðS; ŜÞ ¼

Xn

i¼1

v i cos
2p
l

ti

� �
� v̂ i cos

2p
l

t̂i

� �� �2
(

þ v i sin
2p

l
ti

� �
� v̂ i sin

2p
l

t̂i

� �� �2
)

¼
Xn

i¼1

v2
i cos2 2p

l
ti

� �
þ v̂2

i cos2 2p
l

t̂i

� ��

�2v iv̂ i cos
2p
l

ti

� �
cos

2p
l

t̂i

� ��

þ
Xn

i¼1

v2
i sin2 2p

l
ti

� �
þ v̂2

i sin2 2p
l

t̂i

� �
� 2v iv̂ i sin

2p
l

ti

� �
sin

2p
l

t̂i

� �� �

Noting that v2
i cos2ð2pl tiÞ þ v2

i sin2ð2p
l tiÞ ¼ v2

i ; v̂2
i cos2ð2p

l tiÞþ
v̂2

i sin2 2p
l ti
� 	

¼ v̂2
i

2v iv̂ i cos
2p
l

ti

� �
cos

2p
l

t̂i

� �
þ 2v iv̂ i sin

2p
l

ti

� �
sin

2p
l

t̂i

� �

¼ 2v iv̂ i cos
2p
l
ðti � t̂iÞ

� �

Then we have

D2
eucðS; ŜÞ ¼

Xn

i¼1

v2
i þ v̂2

i � 2v iv̂ i cos
2p
l
ðti � t̂iÞ

� �� 


6

Xn

i¼1

½v2
i þ v̂2

i � 2v iv̂ i� 6
Xn

i¼1

ðv i � v̂ iÞ2 6 D2
euðT; T̂Þ

That is DeucðS; ŜÞ 6 DeucðT; T̂Þ h

Table 2
Summary of quality results (error rate) for 1-NN classification.

Adiac Beef Coffee ECG200 Mixed Bag Shapes Trace

L2 0.389 0.467 0.250 0.120 0.156 0.240
DTW 0.332 0.500 0.191 0.230 0.156 0
L2 on DFT 0.271 0.533 0.321 0.120 0.066 0.150
L2 on DWT 0.445 0.500 0.250 0.130 0.156 0.270
L2 on CHEBY 0.427 0.467 0 0.120 0.156 0.280
L2 on PAA 0.404 0.500 0.250 0.140 0.156 0.290
L2 on APCA 0.563 0.433 0.250 0.200 0.378 0.060
L2 on PL A 0.371 0.533 0.071 0.190 0.267 0.220
L2 on IPA (IPD) 0.327 0.300 0.036 0.120 0.133 0.030
DTW on PAA 0.402 0.533 0.286 0.250 0.156 0.070
DTW on APCA 0.660 0.600 0.214 0.230 0.311 0.010
DTW on PL A 0.371 0.533 0.071 0.200 0.289 0.160
DTW on IPA 0.333 0.300 0.036 0.150 0.178 0.100

Diatom FaceAll ECGFive GunPoint Haptics SwedishLeaf

L2 0.065 0.286 0.203 0.087 0.630 0.211
DTW 0.033 0.192 0.232 0.093 0.623 0.208
L2 on DFT 0.065 0.314 0.006 0.033 0.607 0.150
L2 on DWT 0.065 0.312 0.142 0.093 0.627 0.208
L2 on CHEBY 0.062 0.282 0.131 0.100 0.643 0.213
L2 on PAA 0.069 0.302 0.142 0.093 0.643 0.205
L2 on APCA 0.562 0.459 0.281 0.133 0.721 0.357
L2 on PL A 0.134 0.385 0.236 0.093 0.620 0.224
L2 on IPA (IPD) 0.052 0.268 0.026 0.047 0.610 0.200
DTW on PAA 0.069 0.301 0.276 0.080 0.701 0.194
DTW on APCA 0.461 0.364 0.312 0.080 0.718 0.243
DTW on PL A 0.134 0.453 0.318 0.147 0.617 0.213
DTW on IPA 0.062 0.348 0.022 0.060 0.614 0.221
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Theorem 1 shows that the star coordinate transformation satis-
fies the lower bounding theorem, which provides the basis for the
IP representation of the time series.

3.3. Representation of star coordinate series with IP curve

After obtaining the star coordinate series by transforming the
time series, we can fit the star coordinate series using the IP curve.
Currently, the state-of-the-art methods for fitting dataset with IP
curve include 3L, Gradient and Min–Max, etc. Especially, Min–
Max applies a linear least squares solution to the fitting problem,
appear to have much better performance. Hence, in our work, we
use Min–Max method to represent star coordinate series.

Fig. 3 (a), (b) and (c) show the fitting result of the star coordi-
nate series in Fig. 2 (b) with IP curve of degree 4, 6 and 8 respec-

tively. It is clear from Fig. 3 that the IP curve of degree 8
represents the star coordinate series most accurately, however,
the IP curve of degree 4 and 6 have also a relatively good fit. Gen-
erally, we can choose the degree of IP curve according to accuracy
requirement. In addition, the number of coefficients of the IP is
important in dimensionality reduction. According to (4), the num-
ber of coefficients of 4th degree, 6th degree and 8th degree IP are
14, 27 and 44 respectively. Actually, the 6th degree IP curve with
27 coefficients can efficiently represent the time series whose
length is 286 shown in Fig. 1. Clearly, ratio of dimensionality
reduction is 27/286 � 0.31, namely 31%, which exhibits the power-
ful representation of IP curve for the time series.

In order to evaluate the representation of IP curve, we define the
distance between the IP curve and star coordinate series as repre-
sentation error e of IP curve, which can be written as follows.

Table 3
Summary of quality results (F measure and accuracy in the parentheses) for 1-NN classification.

Adiac Beef Coffee ECG200 Mixed Bag Shapes Trace

L2 0.593
(0.611)

0.505
(0.533)

1
(1)

1
(1)

0.755
(0.844)

0.747
(0.760)

DTW 0.640
(0.669)

0.470
(0.500)

1
(1)

1
(1)

0.755
(0.844)

1
(1)

L2 on DFT 0.717
(0.729)

0.447
(0.467)

1
(1)

1
(1)

0.921
(0.933)

0.838
(0.850)

L2 on DWT 0.544
(0.555)

0.482
(0.500)

1
(1)

1
(1)

0.755
(0.844)

0.710
(0.730)

L2 on CHEBY 0.559
(0.573)

0.546
(0.533)

1
(1)

1
(1)

0.755
(0.844)

0.713
(0.720)

L2 on PAA 0.581
(0.596)

0.42
(0.500)

1
(1)

1
(1)

0.755
(0.844)

0.700
(0.710)

L2 on APCA 0.418
(0.437)

0.385
(0.400)

1
(1)

1
(1)

0.517
(0.622)

0.938
(0.940)

L2 on PL A 0.595
(0.629)

0.533
(0.467)

1
(1)

1
(1)

0.595
(0.733)

0.785
(0.780)

L2 on IPA (IPD) 0.644
(0.672)

0.694
(0.700)

1
(1)

1
(1)

0.849
(0.867)

0.969
(0.970)

DTW on PAA 0.582
(0.599)

0.447
(0.467)

1
(1)

1
(1)

0.755
(0.844)

0.925
(0.930)

DTW on APCA 0.314
(0.340)

0.362
(0.367)

1
(1)

1
(1)

0.587
(0.689)

0.990
(0.990)

DTW on PL A 0.601
(0.629)

0.446
(0.467)

1
(1)

1
(1)

0.569
(0.711)

0.844
(0.840)

DTW on IPA 0.640
(0.668)

0.694
(0.700)

1
(1)

1
(1)

0.790
(0.822)

0.900
(0.900)

Diatom FaceAll ECGFive GunPoint Haptics SwedishLeaf

L2 0.883
(0.937)

0.734
(0.714)

0.749
(0.769)

0.913
(0.913)

0.344
(0.370)

0.782
(0.789)

DTW 0.942
(0.967)

0.815
(0.808)

0.763
(0.768)

0.907
(0.907)

0.379
(0.377)

0.787
(0.792)

L2 on DFT 0.866
(0.937)

0.679
(0.686)

0.722
(0.754)

0.967
(0.967)

0.385
(0.393)

0.848
(0.85)

L2 on DWT 0.883
(0.937)

0.675
(0.688)

0.717
(0.751)

0.907
(0.907)

0.347
(0.373)

0.789
(0.792)

L2 on CHEBY 0.900
(0.938)

0.726
(0.718)

0.773
(0.797)

0.900
(0.9)

0.336
(0.357)

0.783
(0.787)

L2 on PAA 0.886
(0.931)

0.690
(0.698)

0.743
(0.768)

0.907
(0.907)

0.332
(0.357)

0.792
(0.795)

L2 on APCA 0.412
(0.438)

0.525
(0.541)

0.509
(0.54)

0.866
(0.867)

0.271
(0.279)

0.631
(0.643)

L2 on PL A 0.821
(0.866)

0.609
(0.615)

0.657
(0.673)

0.907
(0.907)

0.378
(0.38)

0.773
(0.776)

L2 on IPA (IPD) 0.900
(0.948)

0.720
(0.733)

0.769
(0.804)

0.953
(0.953)

0.381
(0.39)

0.797
(0.8)

DTW on PAA 0.886
(0.931)

0.688
(0.699)

0.723
(0.724)

0.920
(0.92)

0.267
(0.299)

0.804
(0.806)

DTW on APCA 0.511
(0.539)

0.629
(0.636)

0.684
(0.688)

0.920
(0.92)

0.267
(0.282)

0.754
(0.757)

DTW on PL A 0.822
(0.867)

0.538
(0.547)

0.678
(0.682)

0.853
(0.853)

0.366
(0.383)

0.783
(0.787)

DTW on IPA 0.875
(0.938)

0.618
(0.652)

0.978
(0.978)

0.940
(0.94)

0.375
(0.386)

0.771
(0.779)
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e ¼ 1
n

Xn

i¼1

f 2ðxi; yiÞ
krf ðxi; yiÞk

2 ð8Þ

Fig. 4 (a) shows the representation results of IP curve of degree
4, 6 and 8 for the same time series shown in Fig. 1 respectively,
which we can obtain by the following step: Firstly, fit the star coor-
dinate series shown in Fig 2 (b) with IP curve of degree 4, 6 and 8
respectively. Secondly, obtain the zero sets of the three IP. Lastly,
use the inverse transformation (6) to convert the three zero sets
into three time series respectively. Fig. 4(b) shows the representa-
tion errors with Eq. (8) for IP curve of degree 4, 6 and 8 respec-
tively. It is clear from the Fig. 4(b) that the representation error
decreases rapidly as the degree of IP curve increases. Moreover,
we can reach the same conclusion from the three time series of
the IP curve representation in Fig. 4(a). In addition, although the
degree of IP is very large, we cannot find the representation of IP
curve suffers from the range oscillation phenomenon.

4. Similarity measure for IP coefficients

Given two time series T1 and T2, whose corresponding star coor-
dinate series are denoted by S1 and S2, respectively. Then, these
two star coordinate series are fitted by two IP curves whose coef-
ficients vector are denoted by A and �A, respectively. The next task
is to define a distance function between the two vectors. In our
work, we adopt the Euclidean distance, because this distance func-
tion is simple and it is natural for many applications. It is also the
distance function adopted by most studies on analyzing time series
(Keogh and Chakrabarti, 2001; Keogh and Chakrabarti, 2002; Chen

and Chen, 2007). Furthermore, for other more advanced distance
function such as DTW, LCSS, ERP, we only apply them over the IP
coefficients to compare with the ability of state-of-the-art repre-
sentation methods.

Definition 2. Let T1and T2 be two time series of length N, and let A
and �A be the corresponding vectors of IP coefficients. Specifically,
let AT = [a1, a2, ...am] and �AT ¼ ½b1; b2; � � � bm�. Define:

DIPDðAT
; �ATÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

ðai � biÞ2
vuut ð9Þ

The distance function DIPD called similarity measure based on IP
curve (IPD) is a basic Euclidean distance function on the coeffi-
cients. It is clear that the distance function satisfies the three con-
ditions: non-negativity, identity of indiscernible and triangle
inequality.

Lemma 2. let S = {(xi, yi)|i = 1, 2, ...N} and �S ¼ fð�xi; �yiÞji ¼ 1;2; � � �Ng
be two star coordinate series of length N. Supposed that the point
(xi, yi) in S and ð�xi; �yiÞ in �S lie on the straight line y = kix, then we
have

DeucðS; �SÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

ð1þ k2
i Þðxi � �xiÞ2

vuut ð10Þ

Proof. Computing the Euclidean distance between the two vectors
S and �S, we have

Fig. 5. Stability of representation comparison.
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DeucðS; �SÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

½ðxi � �xiÞ2 þ ðyi � �yiÞ2�

vuut
Substituting y = kix for the y of the above equation, it follows Eq.

(10). h

Lemma 3. Let S = {(xi, yi)|i = 1, 2, ...N} and �S ¼ fð�xi; �yiÞji ¼ 1;2; � � �Ng
be two star coordinate series of length N, which are represented by
the two IP curves of degree n f(x, y) = AX = 0 and �f ðx; yÞ ¼ �AX ¼ 0,
respectively. Denoting m by the number of coefficients of the IP
curve, we have

DIPDðAT
; �ATÞ 6 DeucðS; �SÞ ð11Þ

Proof. According to Eq. (4), a1, a2, ..., am�1, am are coefficients of IP
curve monomial 1, x, y, ...xn, xn�1y, ..., yn respectively, where
m = (n + 1)(n + 2)/2. Regarding x,y and a as variables of f(x, y) and
expanding f(x, y, a) in the point (xi, yi, aj) by a first order Taylor ser-
ies approximation, it follows that

f ðxi þ Dxi; yi þ Dyi; aj þ DajÞ ¼ f ðxi; yi; ajÞ þ fxðxi; yi; ajÞDxi

þ fyðxi; yi; ajÞDyi þ faðxi; yi; ajÞDaj

But f ðxi; yi; ajÞ ¼ 0, faðxi; yi; ajÞ ¼ xp
i yq

i , where aj is coefficient of
the monomial xp

i yq
i , so we can obtain

fxðxi; yi; ajÞDxi þ fyðxi; yi; ajÞDyi þ xp
i yq

i Daj ¼ 0

Without loss of generality, suppose (xi, yi) lies on the straight
line y = kix. Then we have

fxðxi; yi; ajÞDxi þ kifyðxi; yi; ajÞDxi þ kq
i xpþq

i Daj ¼ 0

That is

½fxðxi; yi; ajÞ þ kifyðxi; yi; ajÞ�Dxi ¼ �kq
i xpþq

i Daj;

and hence

jDajj
jDxij

¼ jfxðxi; yi; ajÞ þ kifyðxi; yi; ajÞj
jkq

i xpþq
i j

6
jfxðxi; yi; ajÞj þ jkijjfyðxi; yi; ajÞj

jkq
i xpþq

i j
:

By the change of xi and yi according to (5), it follows that

fxðxi; yi; ajÞ ¼ �
2p
N

v i sin
2p
N

ti

� �
; f yðxi; yi; ajÞ ¼

2p
N

v i cos
2p
N

ti

� �
:

From (6), we have v i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i þ y2
i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

i

q
xi. Hence, it follows

that

jDajj
jDxij

¼
j 2p

N v i sinð2p
N tiÞj þ jkijj 2pN v i cosð2pN tiÞj
jkq

i xpþq
i j

6
2p
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

i

q
ð1þ jkijÞjxij
jkq

i xpþq
i j

ð12Þ

Fig. 5. (continued)
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Since the length of star coordinate series is very large, so N is
much greater than m and 2p. Hence we may choose the point (xi, -
yi),j = 1, 2, ..., m in S which corresponds to aj, j = 1, 2, ..., m, such that
jxijP 1, jyijP 1, jyijP jxij for p = 0 or 1 and jyij 6 jxij for q = 0 or 1.
Consequently, we have

ð1þ jkijÞjxij
jkq

i xpþq
i j

¼ jxij þ jyij
jxp

i yq
i j
¼ 1
jxp�1

i yq
i j
þ 1
jxp

i yq�1
i j
6 1:

Thus, from (12), it follows that

jDajj
jDxij

6
2p
N
ð1þ jkijÞjxij
jkq

i xpþq
i j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

i

q
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

i

q
:

That is

jDajj2 6 ð1þ k2
i ÞjDxij2:

Furthermore, for j = 1, 2, ..., m, there exist m inequalities. Sum-
ming all these inequalities together, we have

Xm

j¼1

jDajj2 6
Xm

i¼1

½ð1þ k2
i ÞjDxij2� 6

XN

i¼1

½ð1þ k2
i ÞjDxij2�:

Observe that if the two star coordinate series is similar, then
Euclidean distance between them is very small. Hence, Euclidean
distance between f(x, y) = 0 and �f ðx; yÞ ¼ 0 also is very small. Con-
sequently, we may let Daj ¼ aj � �aj and Dxi ¼ xi � �xi. Then, it fol-
lows that

Xm

j¼1

jaj � �ajj2 6
XN

i¼1

½ð1þ k2
i Þjxi � �xij2�:

From (9) and (10), it follows that

DIPDðAT
; �ATÞ 6 DeucðS; �SÞ: �

Theorem 2. Let T, T̂ be two time series, and AT, AT
_

be the corre-
sponding vectors of IP coefficients. Then:

DIPDðAT AT
_

Þ 6 DeucðT; T̂Þ

Proof. Let S and Ŝ be star coordinate series transformed from T and
T̂ respectively. Then from Lemma 1, it follows that DeucðS; ŜÞ 6
DeucðT; T̂Þ. Furthermore, from Lemma 3, it follows that DIPDðAT AT

_

Þ
6 DeucðS; ŜÞ, and consequently DIPDðAT AT

_

Þ 6 DeucðT; T̂Þ. h

5. Experimental evaluation

In this section, we illustrated the effectiveness of IPA through
measuring its ability and competing it with other methods in sup-
porting time series classification. Furthermore, we demonstrated
the relation between error rate of classification and compression
rate for IPA, and compared it with two state-of-the-art reduction
techniques, PLA and CHEBY.

We conducted the experimental evaluation on many real data
sets. Table 1 provided a summary of those reported here. In partic-
ular, Adiac, Beef, Coffee, ECG200, Trace, Diatom, FaceAll, ECGFive,
GunPoint, Haptics and SwedishLeaf are available at http://
www.cs.ucr.edu/�eamonn/time_series_data/, whereas Mixed-Bag-
Shapes can be found at http://www.cs.ucr.edu/�eamonn/shape

This work focused on assessing the impact of the proposed time
series representation model in similarity detection rather than
finding the best strategy of time series classification. Hence, we
conceived classification frameworks for time series data. Specifi-
cally, we used nearest neighbor classification to evaluate time ser-
ies representation model. Ding and Trajcevsk, (2008) discuss the
advantages with this approach.

5.1. Assessment criteria

In order to valuate the efficacy of dimensionality reduction
methods, we used one nearest classifier (1NN) (Tan et al., 2006)
on labeled time series data, each of which has a correct class label,
and the classifier tries to predict the label as that of its nearest
neighbor. In addition, Error rate, F-measure and accuracy are se-
lected as assessment criteria. Error rate is the number of fault re-
sults of classification divided by the number of all test data.
Clearly, the less error rate is, the better the result of classification.
F-measure is a measure of a test’s accuracy. It considers both the
precision(P) and the recall(R) of the test to compute the measure.
That is, F-measure is harmonic mean of precision and recall

F ¼ 2PR
P þ R

Given a set T of time series of size L, let the expected organiza-
tion of the series in T be {a1, ...ak} and the output of a classification
algorithm be {b1, ...bk}. The precision of bj with respect to ai is de-
fined by Pij = |bj \ ai|/|bj|. The recall of bj with respect to ai is de-
fined by Pij = |bj \ ai|/|aj|. The overall of precision and recall are
defined as

P ¼ 1
k

Xk

i¼1

Pii;R ¼
1
k

Xk

i¼1

Rii

The F-measure can be interpreted as a weighted average of the
precision and recall, which reaches its best value at 1 and worst
score at 0. Accuracy (A) is the proportion of true results (both true
positives and true negatives) in the population

A ¼ 1� 1
2L

Xk

i¼1

ðjbi n aij þ jai n bijÞ

Note that all measures above range with zero and one. Unlike
the error rate, higher values of F-measure and accuracy indicate
better quality.

In order to access the stability of representation, we explored
the relation between the error rate and compression rate (C). Spe-
cifically, compression rate is the dimension after dimensionality
reduction (s) divided by the length of original time series (N), so
that C = s/N. For example, we can use PAA to represent time series
with the various dimensions respectively, such as 10, 20, 30.
Clearly, higher dimensions can capture more detailed information
time series representation can capture. Theoretically, as the com-
pression rate (the dimensions after dimensionality reduction) in-
creases, the error rate of classification decreases. In general, the
error rates of classification with the most powerful representation
method should be the lowest under the same compression rates
among the various representation methods. Then, we consider this
representation method as the most stable one.

5.2. Setup of the competing methods

To make comparative evaluation possible in term of error rate,
F-measure and accuracy, we performed the three methods at levels
of data compression that is close as possible. For instance, if we
used IP curve of degree 6 (the number of its coefficients is 28) to
represent time series dataset, we should set the parameters of
PAA, APCA, DWT, DFT, PLA and CHEBY so that dimensions of their
representations are also 28. For example, for PAA algorithm, we
should choose 28 segments to represent the time series.

In stability experiment, for each time series dataset and
algorithm, we varied the setting of each parameter of these meth-
ods in such way that it achieved the same compression (i.e. the
number of segments). That means, for IPA, the numbers of coeffi-
cients of IP curve are 14, 28 and 44 corresponding to degree 4, 5
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and 8 respectively. Then the parameters of competing methods
should be adjusted so that their dimensions are 14, 28 and 44
respectively too.

5.3. Accuracy in time series classification

We compared IPA against state-of-the-art methods for model-
ing and comparing time series data, which include Euclidean dis-
tance (L2) and DTW as distance measures, and APCA, PAA, PLA,
CHEBY, DWT and DFT as dimensionality reduction methods.

We assessed the performance of IPA and the competing meth-
ods using the 1-NN classification algorithm. Error rates, F-measure
and accuracy obtained by the various methods are shown in Table
2 and Table 3 respectively. For the sake of fair comparison, the var-
ious methods used the same number of segments or coefficients of
various datasets representation, which of Adiac, Beef, Coffee,
ECG200, Mixed-BagShapes, Trace, Diatom, FaceAll, ECGFive, Gun-
Point, Haptics and SwedishLeaf are 28, 6, 28, 14, 14, 28, 14, 28,
28, 28, 28 and 28 respectively. From Table 2 and Table 3, L2 on
DFT performed better than other methods on Adiac, Mixed-Bag-
Shapes, ECGFive, but not on Beef, Coffee, FaceAll, Trace and other
datasets. Using L2 on CHEBY led to most results on Coffee, but
not on the others. Among PAA, APCA and PLA, we can see that
PLA is the best method because PLA represents datasets most accu-
rately among these three methods. However, comparing PLA with
IPA, we can find that the error rates of L2 on IPA in all datasets are
less than ones of L2 on PLA. Specially, IPA led to quality improve-
ments up to about 50% with respect to PLA, and up to about 60%
with respect to DFT and DWT, which meant IPA was superior to
piecewise approximation for representation of time series.

From the above discussion, We can see that L2 on IPA is the first
ranked method in all the datasets, which illustrated that IPA was
the best methods among the competing ones for representation
of times series. We can reach the same conclusion about DTW on
IPA. In addition, L2 on IPA and DTW on IPA always led to better re-
sults than L2 and DTW alone.

5.4. Stability of representation comparison

Fig 5 illustrated the stability of representation of PLA, CHEBY
and IPA over the above twelve real datasets, where the x-axis is
compression rate, and y-axis is error rate. In the experiments, For
the three methods, as the compression rates increased, most of er-
ror rates decreased except PLA and IPA on Beef, PLA and CHEBY on
Trace, but we can see that among all the competing methods, our
method has the lowest error rate of classification at each datasets.
For example, the error rates of IPA on Trace, GunPoint, ECGFive
were far lower than ones of PLA and CHEBY. All the experiment re-
sults indicated that the proposed method had significantly higher
performance for representation of time series than all the other
competing methods.

From Fig 5, we observed the error rates of Beef for PLA and IPA,
Trace for PLA and CHEBY, SwedishLeaf for PLA, CHEBY and IPA also
increased as the compression rates increased. That is, increasing
dimensions of various datasets representation may not have good
result for representation of time series. We called the problem
overfitting. The possibility of overfitting exists because representa-
tion methods of higher compression rate capture too much local
information of time series. Hence, it is of importance to choose
adaptive compression rate to represent time series. The determina-
tion of degree of IP curve discussed in Section 3.3 provided a meth-
od to solve the problem. Again, from most datasets in Fig 5 except
Adiac, we can see the IP curve of degree 6 is good enough to repre-
sent the time series, and IP curve of higher degree cannot further
improve the representation of time series. The fact illustrated the
IPA was the most stable in competing methods.

6. Conclusion

In this paper, we explored how to apply IP curve to represent
time series. IP curve representation enjoys the property that they
approximate time series with least square, by which, they are easy
to compute. In order for IP curve representation to be used for
indexing, classification etc., we proved the Lower Bounding Lem-
ma, and gave the definition of a distance function between two
vectors of IP coefficients. We experimentally evaluated IPA in clas-
sification frameworks and compared it with state-of-the-art
dimensionality reduction methods. Experiments show the effi-
ciency of IPA in time series representation.

Generally, star coordinate is used to visualize to multidimen-
sional data in data mining. However, in our work, star coordinate
series is regarded as boundary points dataset of planar region.
Therefore, the IP curve can represent it. Actually, there are many
methods in the field of image processing to study boundary points
dataset. We think analysis of star coordinate series is new direction
in the study of time series.

We plan to extend the Lower Bounding Lemma to other dis-
tance functions, such as DTW, LCSS, Mahalanobis distance etc. In
addition, we would like to study the feasibility of applying implicit
polynomial surface to multivariate time series.

Acknowledgments

This work was supported in part by Natural Science Foundation
of Jiangsu Province China under Grant BK2009349, Grant
BK2009348 and the Natural Science Foundation of the Jiangsu
Higher Education Institutions under Grant 09KJB520005.

References

Ahmet Yasin Yazicioglu, BerkCalli, Mustafa Unel, 2009. Image based visual servoing
using algebraic curves applied to shape alignment. Proc. IEEE Int’l Conf. On
Intell. Robots and Systems, pp. 5444–5449.

Blane, M.M., Lei, Z., 2000. The 3L algorithm for fitting implicit polynomial curves
and surfaces to data. IEEE Trans. Pattern Anal. Machine Intell. 22 (3), 298–313.

Bo Zheng, Ryo Ishikawa Oishi T., Takamatsu J. Ikeuchi K., 2009. A fast registration
method using IP and its application to ultrasound image registration. IPSJ Trans.
On Comput. Vision and Application, 1, pp. 209–219.

Cai Y., Ng R.T., 2004. Indexing spatio-temporal trajectories with chebyshev
polynomials. In SIGMOD Conf., pp. 599–610.

Chen L., Ng R.T., 2004. On the marriage of Lp-norms and edit distance. In Proc. of the
Thirtieth Internat. Conf. on VLDB, pp. 792–802.

Chen L., 2005. Robust and fast similarity search for moving object trajectories. In
Proc. of the ACM SIGMOD Internat. Conf. on Management of Data, pp. 491–502.

Chen Q., Chen L., 2007. Indexable PLA for efficient similarity search. In Proc. of the
Thirty Third Internat. Conf. on VLDB, pp. 435–446.

Chen Y., Nascimento M.A., 2007. SpADe: On shape based pattern detection in
streaming time series. In IEEE Twenty Third Internat. Conf. on Data, Eng., pp.
786–795.

Fu, T.C., Chung, F.L., 2008. Representing financial time series based on data point
importance. Eng. Appl. Artif. Intell. 21 (2), 277–300.

Fu, T.C., Chung, F.L., 2011. A review on time series data mining. Eng. Appl. Artif.
Intell. 24, 164–181.

Faloutsos C., Ranganahan M., 1994. Fast subsequence matching in time series
databases. In SIGMOD Conf., pp. 419–429.

Gullo, F., Ponti, G., 2009. A time series representation model for accurate and fast
similarity detection. Pattern Recognition 42 (11), 2998–3014.

Hui Ding, Goce Trajcevsk., 2008. Querying and mining of time series data:
experimental comparison of representations and distance measures. In Proc.
of the VLDB Endowment, pp. 1542–1551.

Helzer A., Bar Zohar M., Malah D., 2000. Using implicit polynomials for image
compression. In Proc. of Twenty First IEEE Convention of the Electrical and
Electronic Eng., pp. 384–388.

Heizer, A., Barzohar, M., malah, D., 2004. Stable fitting of 2D curves and 3D surfaces
by implicit polynomials. IEEE Trans. Pattern Anal. Machine Intell. 26 (10), 1283–
1294.

Aßfalg, Johannes., Kriegel, Hans.Peter., 2006. Similarity search on time series based
on threshold queries. Adv. Database Technol. 3869, 276–294.

Kautsky, Jaroslav., Flusser, Jan., 2007. Implicit invariants and object recognition.
Digital Image Comput. Techn. Appl. 3, 462–469.

Jiang Xiaoqian, Xu Wanhong, 2007. 2D image database indexing: a coefficient-based
approach. In proc. of IEEE ICME, pp. 2210–2213.

370 G. Wu, J. Yang / Pattern Recognition Letters 34 (2013) 361–371



Author's personal copy

Korn F., Jagadish H. V., Faloutsos., 1997. Efficiently supporting Ad Hoc queries in
large datasets of time sequences. In Proc. of ACM SIGMOD on management of
data, pp. 510–535.

Keogh, E., Chakrabarti, K., 2001. Dimensionality reduction for fast similarity search
in large time series databases. Knowl. Inf. System 3 (3), 263–286.

Keogh, E., Chakrabarti, K., 2002. Locally adaptive dimensionality reduction for
indexing large time. ACM Trans. Database Systems 27 (2), 188–228.

Keogh, E., Ratanamahatana, C.A., 2005. Exact indexing of dynamic time warping.
Knowl. Inf. System 7 (3), 358–386.

Lin, J., Keogh, E., 2007. Experiencing SAX: a novel symbolic representation of time
series. Data Min. Knowl. Disc. 15 (2), 107–144.

LI Dao lun, ZHA Wen shu, Lu De tang, 2011. Implicit interpolation of time vector
series. in proc. of 2011 Seventh Internat. Conf. on Natural Computation, pp.
151–155.

Marola, G., 2005. A technique for finding the symmetry axes of implicit polynomial
curves under perspective projection. IEEE Trans. Pattern Anal. Machine Intell. 27
(3), 465–470.

Morse M.D., Patel J.M., 2007. An efficient and accurate method for evaluating time
series similarity. In Proc. of ACM SIGMOD Internat. Conf. on Management of
Data, pp. 569–580.

Oden, C., Ercil, A., Yildiz, V.T., Kirmiztia, H., Buke, B., 2001. Hand recognition using
implicit polynomials and geometric features. Springer Lecture Notes Comput.
Sci. 2091, 336–341.

Pong Chan K., Fu A.W., 1999. Efficient time series matching by wavelets. Fifteenth
Internat. Conf. on Data Eng., pp. 126–133.

Pang Ning Tan, Michael Steinbach, Vipin Kumar., 2006. Introduction to data mining,
Addison Wesley.

Lebmeir, Peter., Richter Gebert, Jurgen, 2008. Rotations translations and symmetry
detection for complexified curves. Comput. Aided Geometric Design 25, 707–
719.

Subrahmonia, J., Cooper, D., Keren, D., 1996. Practical reliable Bayesian recognition
of 2D and 3D objects using implicit polynomials and algebraic invariants. IEEE
Trans. Pattern Anal. Machine Intell. 18, 505–519.

Taubin, G., Cukirman, F., Sullivan, S., 1994. Parameterized families of polynomials
for bounded algebraic curve and surface fitting. IEEE Trans. Pattern Anal.
Machine Intell. 16 (3), 286–303.

Tarel, J.P., Cooper, D.B., 2000. The complex representation of algebraic curves and its
simple exploitation for pose estimation and invariant recognition. IEEE Trans.
Pattern Anal. Machine Intell. 22 (7), 663–674.

Tasdizen T., Cooper D.B., 2000. Boundary estimation from intensity color images
with algebraic curve models. In Proc. of Fifteenth Internat. Conf. on, Pattern
Recognition, pp. 225–228.

Tasdizen, T., Tarel, J.P., 2000. Improving the stability of algebraic curves for
application. IEEE Trans. Image Process. 9 (3), 405–416.

Vlachos M., Gunopulos D., Kollios G., 2002. Discovering similar multidimensional
trajectories. In Eighteenth Internat. Conf. on Data, Eng., pp. 673–684.

Wu, Gang, Li, Daolun, 2002. Object representation and symmetry detection based
on implicit polynomial curves. J. Comput. Res. Dev. 39 (10), 1337–1344.

Wu Gang, Li Dao lun., 2004. Object recognition based on affined invariants in
implicit polynomial curves. Acta Electronica Sinica., 32 (12), 1987–1991.

Wu, Gang, 2007. Research on degree of fitting implicit polynomial curves and
surfaces. J. Comput. Res. Dev. 44 (1), 148–153.

G. Wu, J. Yang / Pattern Recognition Letters 34 (2013) 361–371 371




